《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Overview

Dual-Resolution Correspondence Network

Dual-Resolution Correspondence Network, NeurIPS 2020

Dependency

All dependencies are included in asset/dualrcnet.yml. You need to install conda first, and then run

conda env create --file asset/dualrcnet.yml 

To activate the environment, run

conda activate dualrcnet

Preparing data

We train our model on MegaDepth dataset. To prepare for the data, you need to download the MegaDepth SfM models from the MegaDepth website and download training_pairs.txt and validation_pairs.txt from this link. Then place both training_pairs.txt and validation_pairs.txt files under the downloaded directory MegaDepth_v1_SfM.

Training

After downloading the training data, run

python train.py --training_file path/to/training_pairs.txt --validation_file path/to/validation_pairs.txt --image_path path/to/MegaDepth_v1_SfM

Pre-trained model

We also provide our pre-trained model. You can download dualrc-net.pth.tar from this link and place it under the directory trained_models.

Evaluation on HPatches

The dataset can be downloaded from HPatches repo. You need to download HPatches full sequences.
After downloading the dataset, then:

  1. Browse to HPatches/
  2. Run python eval_hpatches.py --checkpoint path/to/model --root path/to/parent/directory/of/hpatches_sequences. This will generate a text file which stores the result in current directory.
  3. Open draw_graph.py. Change relevent path accordingly and run the script to draw the result.

We provide results of DualRC-Net alongside with results of other methods in directory cache-top.

Evaluation on InLoc

In order to run the InLoc evaluation, you first need to clone the InLoc demo repo, and download and compile all the required depedencies. Then:

  1. Browse to inloc/.
  2. Run python eval_inloc_extract.py adjusting the checkpoint and experiment name. This will generate a series of matches files in the inloc/matches/ directory that then need to be fed to the InLoc evaluation Matlab code.
  3. Modify the inloc/eval_inloc_compute_poses.m file provided to indicate the path of the InLoc demo repo, and the name of the experiment (the particular directory name inside inloc/matches/), and run it using Matlab.
  4. Use the inloc/eval_inloc_generate_plot.m file to plot the results from shortlist file generated in the previous stage: /your_path_to/InLoc_demo_old/experiment_name/shortlist_densePV.mat. Precomputed shortlist files are provided in inloc/shortlist.

Evaluation on Aachen Day-Night

In order to run the Aachen Day-Night evaluation, you first need to clone the Visualization benchmark repo, and download and compile all the required depedencies (note that you'll need to compile Colmap if you have not done so yet). Then:

  1. Browse to aachen_day_and_night/.
  2. Run python eval_aachen_extract.py adjusting the checkpoint and experiment name.
  3. Copy the eval_aachen_reconstruct.py file to visuallocalizationbenchmark/local_feature_evaluation and run it in the following way:
python eval_aachen_reconstruct.py 
	--dataset_path /path_to_aachen/aachen 
	--colmap_path /local/colmap/build/src/exe
	--method_name experiment_name
  1. Upload the file /path_to_aachen/aachen/Aachen_eval_[experiment_name].txt to https://www.visuallocalization.net/ to get the results on this benchmark.

BibTex

If you use this code, please cite our paper

@inproceedings{li20dualrc,
 author		= {Xinghui Li and Kai Han and Shuda Li and Victor Prisacariu},
 title   	= {Dual-Resolution Correspondence Networks},
 booktitle 	= {Conference on Neural Information Processing Systems (NeurIPS)},
 year    	= {2020},
}

Acknowledgement

Our code is based on the wonderful code provided by NCNet, Sparse-NCNet and ANC-Net.

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Woosung Choi 63 Nov 14, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022