๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

Overview

CoNeRF: Controllable Neural Radiance Fields

arXiv MIT license Website Datasets

This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields"

The codebase is based on HyperNeRF implemente in JAX, building on JaxNeRF.

Setup

The code can be run under any environment with Python 3.8 and above. (It may run with lower versions, but we have not tested it).

We recommend using Miniconda and setting up an environment:

conda create --name conerf python=3.8

Next, install the required packages:

pip install -r requirements.txt

Install the appropriate JAX distribution for your environment by following the instructions here. For example:

# For CUDA version 11.1
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Dataset

Basic structure

The dataset uses the same format as Nerfies for the image extraction and camera estimation.

For annotations, we create an additional file annotations.yml consisting of attribute values and their corresponding frames, and a folder with [frame_id].json files (only annotated frames are required to have a corresponding .json file) where each *.json file is a segmentation mask created with LabelMe. In summary, each dataset has to have the following structure:

<dataset>
    โ”œโ”€โ”€ annotations
    โ”‚   โ””โ”€โ”€ ${item_id}.json
    โ”œโ”€โ”€ annotations.yml
    โ”œโ”€โ”€ camera
    โ”‚   โ””โ”€โ”€ ${item_id}.json
    โ”œโ”€โ”€ camera-paths
    โ”œโ”€โ”€ colmap
    โ”œโ”€โ”€ rgb
    โ”‚   โ”œโ”€โ”€ ${scale}x
    โ”‚   โ””โ”€โ”€ โ””โ”€โ”€ ${item_id}.png
    โ”œโ”€โ”€ metadata.json
    โ”œโ”€โ”€ dataset.json
    โ”œโ”€โ”€ scene.json
    โ””โ”€โ”€ mapping.yml

The mapping.yml file can be created manually and serves to map class indices to class names which were created with LabelMe. It has the following format:

<index-from-0>: <class-name>

for example:

0: left eye
1: right eye

The annotations.yml can be created manually as well (though we encourage using the provided notebook for this task) and has the following format:

- class: <id>
  frame: <number>
  value: <attribute-value> # between -1 and 1

for example:

- class: 0 # corresponding to left eye
  frame: 128
  value: -1
- class: 1 # corresponding to right eye
  frame: 147
  value: 1
- class: 2 # corresponding to mouth
  frame: 147
  value: -1 

Principles of annotating the data

  • Our framework works well with just a bunch of annotations (for extreme points as an example). For our main face visualizations, we used just 2 annotations per attribute.
  • We highly recommend annotating these frames that are extremes of possible controllability, for example, fully eye closed will be -1 value and fully open eye will +1 value. Though it is not necessary to be exact in extremes, the more accurate annotations, the more accurate controllability you can expect
  • Each attribute can be annotated independently, i.e., there is no need to look for frames that have exactly extreme values of all attributes. For example, left eye=-1 and left eye=+1 values can be provided in frames 28 and 47, while right eye=-1 and right eye=+1 can be provided in any other frames.
  • Masks should be quite rough oversized, it is generally better to have bigger than smaller annotations.
  • The general annotation pipeline looks like this:
  1. Find set of frames that consist of extreme attributions (e.g. closed eye, open eye etc.).
  2. Provide necessary values in for attributes to be controlled in annotations.yml.
  3. Set names for these attributes (necessary for the masking part).
  4. Run LabelMe.
  5. Save annotated frames in annotations/.

Now you can run the training! Also, check out our datasets (52GB of data) to avoid any preprocessing steps on your own.

We tried our best to make our CoNeRF codebase to be general for novel view synthesis validation dataset (conerf/datasets/nerfies.py file) but we mainly focused on the interpolation task. If you have an access to the novel view synthesis rig as used in NeRFies or HyperNeRF, and you find out that something doesn't work, please leave an issue.

Providing value annotations

We extended the basic notebook used in NeRFies and HyperNeRF for processing the data so that you can annotate necessary images with attributes. Please check out notebooks/Capture_Processing.ipynb for more details. The notebook (despite all the files from NeRFies) will also generate <dataset>/annotations.yml and <dataset>/mapping.yml files.

Providing masking annotations

We adapted data loading class to handle annotations from LabelMe (we used its docker version). Example annotation for one of our datasets looks like this:

example-annotation

The program generates *.json files in File->Output Dir which should be located in <dataset>/annotations/ folder.

Training

After preparing a dataset, you can train a Nerfie by running:

export DATASET_PATH=/path/to/dataset
export EXPERIMENT_PATH=/path/to/save/experiment/to
python train.py \
    --base_folder $EXPERIMENT_PATH \
    --gin_bindings="data_dir='$DATASET_PATH'" \
    --gin_configs configs/test_local_attributes.gin

To plot telemetry to Tensorboard and render checkpoints on the fly, also launch an evaluation job by running:

python eval.py \
    --base_folder $EXPERIMENT_PATH \
    --gin_bindings="data_dir='$DATASET_PATH'" \
    --gin_configs configs/test_local_attributes.gin

The two jobs should use a mutually exclusive set of GPUs. This division allows the training job to run without having to stop for evaluation.

Configuration

  • We use Gin for configuration.
  • We provide a couple preset configurations.
  • Please refer to config.py for documentation on what each configuration does.
  • Preset configs:
    • baselines/: All configs that were used to perform quantitative evaluation in the experiments, including baseline methods. The _proj suffix denotes a method that uses a learnable projection.
      • ours.gin: The full CoNeRF architecture with masking.
      • hypernerf_ap[_proj].gin: The axis-aligned plane configuration for HyperNeRF.
      • hypernerf_ds[_proj].gin: The deformable surface configuration for HyperNeRF.
      • nerf_latent[_proj].gin: The configuration for a simple baselines where we concatenate a learnable latent with each coordinate (resembles HyperNeRF AP without the warping field).
      • nerfies[_proj].gin: The configuration for the NeRFies model.
      • nerf.gin: The configuration for the simplest NeRF architecture.
    • full-hd/, hd/ and post/: We repurposed our baselines/ours.gin configuration for training for different resolutions and different sampling parameters that increase the quality of the generated images. Using post/ours.gin required us to use 4x A100 GPU for 2 weeks to make the training converge.

Synthetic dataset

We generated the synthetic dataset using Kubric. You can find the generation script here. After generating the dataset, you can run prepare_kubric_dataset.py to canonicalize its format to the same one that works with CoNeRF. The dataset is already attached in the provided zip file.

Additional scripts

All scripts below are used as the ones for training, they need $EXPERIMENT_PATH and $DATASET_PATH to be specified. They save the results into $EXPERIMENT_PATH.

  • render_changing_attributes.py: Renders each of changing attributes under a fixed camera.
  • render_video.py: Renders changing view under a fixed set of attributes.
  • render_all.py: Renders dynamically changing attributes and the camera parameters.
  • train_lr.py: Estimates parameters of the linear regression. The estimated model maps highly dimensional embedding into controllable attributes.

Additional notes

  • We have used notebooks/Results.ipynb to generate tables/visualizations for the article. While it may not particularily useful for you case, we have left it so you can copy or reuse some of its snippets. It's especially useful because it shows how to extract data from tensorboards.
  • We removed some of notebooks that were available in the HyperNeRF's codebase (ex. for training) but were no longer applicable to CoNeRF. We highly recommend using available scripts. If you have ever managed to adapt HyperNeRF's notebooks, please leave a pull request.

Citing

If you find our work useful, please consider citing:

@inproceedings{kania2022conerf,
  title     = {{CoNeRF: Controllable Neural Radiance Fields}},
  author    = {Kania, Kacper and Yi, Kwang Moo and Kowalski, Marek and Trzci{\'n}ski, Tomasz and Tagliasacchi, Andrea},
  booktitle   = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year      = {2022}
}
Owner
Kacper Kania
PhDing in Neural Human Rendering ... ๐Ÿ‘€
Kacper Kania
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David รlvarez de la Torre 0 Feb 09, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022