๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

Overview

CoNeRF: Controllable Neural Radiance Fields

arXiv MIT license Website Datasets

This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields"

The codebase is based on HyperNeRF implemente in JAX, building on JaxNeRF.

Setup

The code can be run under any environment with Python 3.8 and above. (It may run with lower versions, but we have not tested it).

We recommend using Miniconda and setting up an environment:

conda create --name conerf python=3.8

Next, install the required packages:

pip install -r requirements.txt

Install the appropriate JAX distribution for your environment by following the instructions here. For example:

# For CUDA version 11.1
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Dataset

Basic structure

The dataset uses the same format as Nerfies for the image extraction and camera estimation.

For annotations, we create an additional file annotations.yml consisting of attribute values and their corresponding frames, and a folder with [frame_id].json files (only annotated frames are required to have a corresponding .json file) where each *.json file is a segmentation mask created with LabelMe. In summary, each dataset has to have the following structure:

<dataset>
    โ”œโ”€โ”€ annotations
    โ”‚   โ””โ”€โ”€ ${item_id}.json
    โ”œโ”€โ”€ annotations.yml
    โ”œโ”€โ”€ camera
    โ”‚   โ””โ”€โ”€ ${item_id}.json
    โ”œโ”€โ”€ camera-paths
    โ”œโ”€โ”€ colmap
    โ”œโ”€โ”€ rgb
    โ”‚   โ”œโ”€โ”€ ${scale}x
    โ”‚   โ””โ”€โ”€ โ””โ”€โ”€ ${item_id}.png
    โ”œโ”€โ”€ metadata.json
    โ”œโ”€โ”€ dataset.json
    โ”œโ”€โ”€ scene.json
    โ””โ”€โ”€ mapping.yml

The mapping.yml file can be created manually and serves to map class indices to class names which were created with LabelMe. It has the following format:

<index-from-0>: <class-name>

for example:

0: left eye
1: right eye

The annotations.yml can be created manually as well (though we encourage using the provided notebook for this task) and has the following format:

- class: <id>
  frame: <number>
  value: <attribute-value> # between -1 and 1

for example:

- class: 0 # corresponding to left eye
  frame: 128
  value: -1
- class: 1 # corresponding to right eye
  frame: 147
  value: 1
- class: 2 # corresponding to mouth
  frame: 147
  value: -1 

Principles of annotating the data

  • Our framework works well with just a bunch of annotations (for extreme points as an example). For our main face visualizations, we used just 2 annotations per attribute.
  • We highly recommend annotating these frames that are extremes of possible controllability, for example, fully eye closed will be -1 value and fully open eye will +1 value. Though it is not necessary to be exact in extremes, the more accurate annotations, the more accurate controllability you can expect
  • Each attribute can be annotated independently, i.e., there is no need to look for frames that have exactly extreme values of all attributes. For example, left eye=-1 and left eye=+1 values can be provided in frames 28 and 47, while right eye=-1 and right eye=+1 can be provided in any other frames.
  • Masks should be quite rough oversized, it is generally better to have bigger than smaller annotations.
  • The general annotation pipeline looks like this:
  1. Find set of frames that consist of extreme attributions (e.g. closed eye, open eye etc.).
  2. Provide necessary values in for attributes to be controlled in annotations.yml.
  3. Set names for these attributes (necessary for the masking part).
  4. Run LabelMe.
  5. Save annotated frames in annotations/.

Now you can run the training! Also, check out our datasets (52GB of data) to avoid any preprocessing steps on your own.

We tried our best to make our CoNeRF codebase to be general for novel view synthesis validation dataset (conerf/datasets/nerfies.py file) but we mainly focused on the interpolation task. If you have an access to the novel view synthesis rig as used in NeRFies or HyperNeRF, and you find out that something doesn't work, please leave an issue.

Providing value annotations

We extended the basic notebook used in NeRFies and HyperNeRF for processing the data so that you can annotate necessary images with attributes. Please check out notebooks/Capture_Processing.ipynb for more details. The notebook (despite all the files from NeRFies) will also generate <dataset>/annotations.yml and <dataset>/mapping.yml files.

Providing masking annotations

We adapted data loading class to handle annotations from LabelMe (we used its docker version). Example annotation for one of our datasets looks like this:

example-annotation

The program generates *.json files in File->Output Dir which should be located in <dataset>/annotations/ folder.

Training

After preparing a dataset, you can train a Nerfie by running:

export DATASET_PATH=/path/to/dataset
export EXPERIMENT_PATH=/path/to/save/experiment/to
python train.py \
    --base_folder $EXPERIMENT_PATH \
    --gin_bindings="data_dir='$DATASET_PATH'" \
    --gin_configs configs/test_local_attributes.gin

To plot telemetry to Tensorboard and render checkpoints on the fly, also launch an evaluation job by running:

python eval.py \
    --base_folder $EXPERIMENT_PATH \
    --gin_bindings="data_dir='$DATASET_PATH'" \
    --gin_configs configs/test_local_attributes.gin

The two jobs should use a mutually exclusive set of GPUs. This division allows the training job to run without having to stop for evaluation.

Configuration

  • We use Gin for configuration.
  • We provide a couple preset configurations.
  • Please refer to config.py for documentation on what each configuration does.
  • Preset configs:
    • baselines/: All configs that were used to perform quantitative evaluation in the experiments, including baseline methods. The _proj suffix denotes a method that uses a learnable projection.
      • ours.gin: The full CoNeRF architecture with masking.
      • hypernerf_ap[_proj].gin: The axis-aligned plane configuration for HyperNeRF.
      • hypernerf_ds[_proj].gin: The deformable surface configuration for HyperNeRF.
      • nerf_latent[_proj].gin: The configuration for a simple baselines where we concatenate a learnable latent with each coordinate (resembles HyperNeRF AP without the warping field).
      • nerfies[_proj].gin: The configuration for the NeRFies model.
      • nerf.gin: The configuration for the simplest NeRF architecture.
    • full-hd/, hd/ and post/: We repurposed our baselines/ours.gin configuration for training for different resolutions and different sampling parameters that increase the quality of the generated images. Using post/ours.gin required us to use 4x A100 GPU for 2 weeks to make the training converge.

Synthetic dataset

We generated the synthetic dataset using Kubric. You can find the generation script here. After generating the dataset, you can run prepare_kubric_dataset.py to canonicalize its format to the same one that works with CoNeRF. The dataset is already attached in the provided zip file.

Additional scripts

All scripts below are used as the ones for training, they need $EXPERIMENT_PATH and $DATASET_PATH to be specified. They save the results into $EXPERIMENT_PATH.

  • render_changing_attributes.py: Renders each of changing attributes under a fixed camera.
  • render_video.py: Renders changing view under a fixed set of attributes.
  • render_all.py: Renders dynamically changing attributes and the camera parameters.
  • train_lr.py: Estimates parameters of the linear regression. The estimated model maps highly dimensional embedding into controllable attributes.

Additional notes

  • We have used notebooks/Results.ipynb to generate tables/visualizations for the article. While it may not particularily useful for you case, we have left it so you can copy or reuse some of its snippets. It's especially useful because it shows how to extract data from tensorboards.
  • We removed some of notebooks that were available in the HyperNeRF's codebase (ex. for training) but were no longer applicable to CoNeRF. We highly recommend using available scripts. If you have ever managed to adapt HyperNeRF's notebooks, please leave a pull request.

Citing

If you find our work useful, please consider citing:

@inproceedings{kania2022conerf,
  title     = {{CoNeRF: Controllable Neural Radiance Fields}},
  author    = {Kania, Kacper and Yi, Kwang Moo and Kowalski, Marek and Trzci{\'n}ski, Tomasz and Tagliasacchi, Andrea},
  booktitle   = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year      = {2022}
}
Owner
Kacper Kania
PhDing in Neural Human Rendering ... ๐Ÿ‘€
Kacper Kania
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Cรณdigo de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Garbage classification using structure data.

ๅžƒๅœพๅˆ†็ฑปๆจกๅž‹ไฝฟ็”จ่ฏดๆ˜Ž 1.ๅŒ…ๅซไปฅไธ‹ๆ•ฐๆฎๆ–‡ไปถ ๆ–‡ไปถ ๆ่ฟฐ data/MaterialMapping.csv ็‰ฉไฝ“ไปฅๅŠๅ…ถๅฝ’็ฑป็š„ไฟกๆฏ data/TestRecords ๅ…‰่ฐฑๅŽŸๅง‹ๆต‹่ฏ•ๆ•ฐๆฎ CSV ๆ–‡ไปถ data/TestRecordDesc.zip CSV ๆ–‡ไปถๆ่ฟฐๆ–‡ไปถ data/Boundaries.cs

wenqi 1 Dec 10, 2021
22 Oct 14, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022