# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing JGraphT) and Pandas(for data analysis) are installed. To install Maven on Ubuntu, type the following commands on terminal: sudo apt-get update sudo apt-get install maven For Pandas, type the following: pip3 install pandas ( sudo apt-get install python3-pip if pip is not installed already) # 2. Compilation Type the following to compile this project: mvn compile # 3. Running the code Below is the command for running tests for SNAP(DIMACS) and grid data. java -Xms24G -Xmx48G -Xmn36G -Xss1G -cp $CLASSPATHS shell.TestSNAP (the filename of data; just the name and not the path) (# of tests) (randomization seed) java -Xms32G -Xmx64G -Xmn48G -Xss1G -cp $CLASSPATHS shell.TestGrid (Maximum dimension) (dimension increment) [List of the values for k, space-separated] You may change the randomization seed (vertex selection) to assess reproducibility. (In our experiment, the seed was set to 2021.) For the data, check "src/SNAP(or DIMACS)". Output "test_result.csv" will be saved on "target" directory. Check if 'CLASSPATHS' is set properly. Please refer to " sample.sh " for examples & further details. #4. Obtaining average processing time and diversity First, move to the target directory. Then run get_averages.py python3 get_averages (.csv file name) [list of the values for k, space-separated. Optional parameter.]
Diverse graph algorithms implemented using JGraphT library.
Overview
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array
shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa
FAVD: Featherweight Assisted Vulnerability Discovery
FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera
Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.
COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)
Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho
using STGCN to achieve egg classification task
EEG Classification The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)
Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks
ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip
Multi-task head pose estimation in-the-wild
Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.
Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.
Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.
EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION
Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp
Vector Quantized Diffusion Model for Text-to-Image Synthesis
Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov
A self-supervised learning framework for audio-visual speech
AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A
HandTailor: Towards High-Precision Monocular 3D Hand Recovery
HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017
pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)
Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im
Predicting Student Attentiveness using OpenCV
Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st