# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing JGraphT) and Pandas(for data analysis) are installed. To install Maven on Ubuntu, type the following commands on terminal: sudo apt-get update sudo apt-get install maven For Pandas, type the following: pip3 install pandas ( sudo apt-get install python3-pip if pip is not installed already) # 2. Compilation Type the following to compile this project: mvn compile # 3. Running the code Below is the command for running tests for SNAP(DIMACS) and grid data. java -Xms24G -Xmx48G -Xmn36G -Xss1G -cp $CLASSPATHS shell.TestSNAP (the filename of data; just the name and not the path) (# of tests) (randomization seed) java -Xms32G -Xmx64G -Xmn48G -Xss1G -cp $CLASSPATHS shell.TestGrid (Maximum dimension) (dimension increment) [List of the values for k, space-separated] You may change the randomization seed (vertex selection) to assess reproducibility. (In our experiment, the seed was set to 2021.) For the data, check "src/SNAP(or DIMACS)". Output "test_result.csv" will be saved on "target" directory. Check if 'CLASSPATHS' is set properly. Please refer to " sample.sh " for examples & further details. #4. Obtaining average processing time and diversity First, move to the target directory. Then run get_averages.py python3 get_averages (.csv file name) [list of the values for k, space-separated. Optional parameter.]
Diverse graph algorithms implemented using JGraphT library.
Overview
Supervised domain-agnostic prediction framework for probabilistic modelling
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data
Implementation of the Swin Transformer in PyTorch.
Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,
Split your patch similarly to `git add -p` but supporting multiple buckets
split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection
GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra
Underwater image enhancement
LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.
N-gram models- Unsmoothed, Laplace, Deleted Interpolation
N-gram models- Unsmoothed, Laplace, Deleted Interpolation
A deep neural networks for images using CNN algorithm.
Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c
Source code of generalized shuffled linear regression
Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio
Label Mask for Multi-label Classification
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).
MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an
Pytorch domain adaptation package
DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).
Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm
DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data
DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki
Deploy a ML inference service on a budget in less than 10 lines of code.
BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2
Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot
Trajectory Extraction of road users via Traffic Camera
Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th