Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

Related tags

Deep Learningshindo
Overview

shindo.py

Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array

Introduction

Japan is a country known for frequent earthquake occurrence. A special scale to evaluate the seismic intensity called shindo (震度) have been defined by the Japan Meteorological Agency (JMA). Long ago, the shindo scale was determined by personnel who inspect the damaged area in person to observe the ratio of collapsed houses, etc. However, from a few decades ago, it was begun to calculate the shindo scale from digital acceleration data recorded by accelerometers. The shindo scale has levels from 0 to 7, where actually 5 and 6 are devided into 5-, 5+, 6-, and 6+. 0 is the weakest and 7 is the strongest. For example, the 1995 Hanshin-Awaji Earthquake (1.17) and the 2011 Great East Japan Earthquake (3.11) recorded shindo 7, together with several other strongest earthquakes. In contrast, earthquakes at shindo 3 or below are often.

This Python module, shindo.py, calculates the shindo scale from 3-D acceleration data stored in a NumPy array in the unit of [gal] or [cm/s2].

Calculation method

Usually, the acceleration data for north-south, east-west, and up-down axes are acquired every 10 ms to calculate shindo. If a NumPy array stores the acceleration data as such in [gal], this Python module can calculates shindo.

Calculation steps

There are seven steps to calculate shindo from acceleration data.

  1. Each of the 3-D acceleration data is transformed into frequency domain by DFT or FFT.
  2. Three special filters are appplied to the 3-D acceleration spectra.
  3. The spectra is transformed back into time domain by inverse DFT or FFT.
  4. The root-sum-square (RSS) acceleration (i.e. the absolute value of the vector sum) is calculated from the time-domain north-south, east-west, and up-down data obtained in 3.
  5. A value called a is found where the RSS acceleration is above the value of a for 0.3 seconds.
  6. A value called I is obtained by I = 2 log10 a + 0.94.
  7. I is rounded at the third digits from the decimal point and cut off the fractional values below the second digit from the decimal point.

Special filters

Three filters are applied to the spectra, namely, the periodic-effect filter, the high-cut filter, and the low-cut filter. The mathematical expression of these filters can be found in the WikiPedia article, but the gain of the filters are shown below.

Periodic-effect, high-cut, and low-cut filters

In frequency domain, “applying filters” means just multiplying the gain in the figure above to the spectra, i.e., product of two NumPy arrays if the filters are also expressed as a NumPy array.

How to use

shindo.getShindo(a: numpy.ndarray, Ts: float) -> float

Giving an NumPy array a whose shape is (N, 3) to this shindo.getShindo() function returns the JMA instrumental shindo value, which corresponds to the result, I, after Step 7 above. Ts is the sampling period. Usually, Ts = 0.01 if you give this function the recorded past seismic data from the JMA website.

The number of data points of the NumPy array, N, is arbitrary. However, the number of data points should contain enough length in time domain, e.g., 5 seconds, to enable accurate calculation of shindo. If Ts = 10 ms, N = 500 for 5 seconds of acceleration data.

shindo.getShindoName(I: float, lang: str = 'jp') -> str

This functon converts the JMA instrumental shindo scale, which may have fractional values below the decimal point, into the actual shindo scale. If lang = 'jp' is given, shindo 5-, 5+, 6-, and 6+ becomes 5弱, 5強, 6弱, and 6強 by this function. if lang != 'jp', 5-, 5+, 6-, and 6+ are returned, as a string. Shindo 0-4 are also returned as a string.

Test bench

This module contains the if __name__ == '__main__': section in order to allow to be run and test itself. A data of past major earthquake, which was observed in Yonago, Tottori, Japan, is automatically downloaded as a CSV file and the acceleration data is acquired as a NumPy array. The calculation will show shindo 5.1, which is equal to the value available on the JMA website. You can change the past earthquake if you know the URL of the CSV file. See this website for the past major earthquake acceleration data.

Owner
RR_Inyo
An electrical engineer/researcher wanting to use programming languages to enhance power electronics systems design and analysis. A hobbyist programmer.
RR_Inyo
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022