CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Overview

Diverse Structure Inpainting

ArXiv | Papar | Supplementary Material | BibTex

This repository is for the CVPR 2021 paper, "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE".

If our method is useful for your research, please consider citing.

Introduction

(Top) Input incomplete image, where the missing region is depicted in gray. (Middle) Visualization of the generated diverse structures. (Bottom) Output images of our method.

Places2 Results

Results on the Places2 validation set using the center-mask Places2 model.

CelebA-HQ Results

Results on one CelebA-HQ test image with different holes using the random-mask CelebA-HQ model.

Installation

This code was tested with TensorFlow 1.12.0 (later versions may work, excluding 2.x), CUDA 9.0, Python 3.6 and Ubuntu 16.04

Clone this repository:

git clone https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting.git

Datasets

  • CelebA-HQ: the high-resolution face images from Growing GANs. 24183 images for training, 2993 images for validation and 2824 images for testing.
  • Places2: the challenge data from 365 scene categories. 8 Million images for training, 36K images for validation and 328K images for testing.
  • ImageNet: the data from 1000 natural categories. 1 Million images for training and 50K images for validation.

Training

  • Collect the dataset. For CelebA-HQ, we collect the 1024x1024 version. For Places2 and ImageNet, we collect the original version.
  • Prepare the file list. Collect the path of each image and make a file, where each line is a path (end with a carriage return except the last line).
  • Modify checkpoints_dir, dataset, train_flist and valid_flist arguments in train_vqvae.py, train_structure_generator.py and train_texture_generator.py.
  • Modify data/data_loader.py according to the dataset. For CelebA-HQ, we resize each image to 266x266 and randomly crop a 256x256. For Places2 and ImageNet, we randomly crop a 256x256
  • Run python train_vqvae.py to train VQ-VAE.
  • Modify vqvae_network_dir argument in train_structure_generator.py and train_texture_generator.py based on the path of pre-trained VQ-VAE.
  • Modify the mask setting arguments in train_structure_generator.py and train_texture_generator.py to choose center mask or random mask.
  • Run python train_structure_generator.py to train the structure generator.
  • Run python train_texture_generator.py to train the texture generator.
  • Modify structure_generator_dir and texture_generator_dir arguments in save_full_model.py based on the paths of pre-trained structure generator and texture generator.
  • Run python save_full_model.py to save the whole model.

Testing

  • Collect the testing set. For CelebA-HQ, we resize each image to 256x256. For Places2 and ImageNet, we crop a center 256x256.
  • Collect the corresponding mask set (2D grayscale, 0 indicates the known region, 255 indicates the missing region).
  • Prepare the img file list and the mask file list as training.
  • Modify checkpoints_dir, dataset, img_flist and mask_flist arguments in test.py.
  • Download the pre-trained model and put model.ckpt.meta, model.ckpt.index, model.ckpt.data-00000-of-00001 and checkpoint under model_logs/ directory.
  • Run python test.py

Pre-trained Models

Download the pre-trained models using the following links and put them under model_logs/ directory.

The center_mask models are trained with images of 256x256 resolution with center 128x128 holes. The random_mask models are trained with random regular and irregular holes.

Inference Time

One advantage of GAN-based and VAE-based methods is their fast inference speed. We measure that Mutual Encoder-Decoder with Feature Equalizations runs at 0.2 second per image on a single NVIDIA 1080 Ti GPU for images of resolution 256×256. In contrast, our model runs at 45 seconds per image. Naively sampling our autoregressive network is the major source of computational time. Fortunately, this time can be reduced by an order of magnitude using an incremental sampling technique which caches and reuses intermediate states of the network. Consider using this technique for faster inference.

Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022