Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Overview

Video Class Agnostic Segmentation

[Method Paper] [Benchmark Paper] [Project] [Demo]

Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation Benchmark in Autonomous Driving" in Workshop on Autonomous Driving, CVPR 2021.



Installation

This repo is tested under Python 3.6, PyTorch 1.4

  • Download Required Packages
pip install -r requirements.txt
pip install "git+https://github.com/cocodataset/panopticapi.git"
  • Setup mmdet
python setup.py develop

Motion Segmentation Track

Dataset Preparation

Inference

  • Download Trained Weights on Ego Flow Suppressed, trained on Cityscapes and KITTI-MOTS

  • Modify Configs according to dataset path + Image/Annotation/Flow prefix

configs/data/kittimots_motion_supp.py
configs/data/cscapesvps_motion_supp.py
  • Evaluate CAQ,
python tools/test_eval_caq.py CONFIG_FILE WEIGHTS_FILE

CONFIG_FILE: configs/infer_kittimots.py or configs/infer_cscapesvps.py

  • Qualitative Results
python tools/test_vis.py CONFIG_FILE WEIGHTS_FILE --vis_unknown --save_dir OUTS_DIR
  • Evaluate Image Panoptic Quality, Note: evaluated on 1024x2048 Images
python tools/test_eval_ipq.py configs/infer_cscapesvps_pq.py WEIGHTS_FILE --out PKL_FILE

Training

Coming Soon ...

Open-set Segmentation Track

Coming soon ...

Acknowledgements

Dataset and Repository relied on these sources:

  • Voigtlaender, Paul, et al. "Mots: Multi-object tracking and segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
  • Kim, Dahun, et al. "Video panoptic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
  • Wang, Xinlong, et al. "Solo: Segmenting objects by locations." European Conference on Computer Vision. Springer, Cham, 2020.
  • This Repository built upon SOLO Code

Citation

@article{siam2021video,
      title={Video Class Agnostic Segmentation Benchmark for Autonomous Driving}, 
      author={Mennatullah Siam and Alex Kendall and Martin Jagersand},
      year={2021},
      eprint={2103.11015},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

If you have any questions regarding the dataset or repository, please contact [email protected].

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
190 Jan 03, 2023
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022