LIVECell - A large-scale dataset for label-free live cell segmentation

Related tags

Deep LearningLIVECell
Overview

LIVECell dataset

This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale dataset for label-free live cell segmentation" by Edlund et. al. 2021.

Background

Light microscopy is a cheap, accessible, non-invasive modality that when combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells enables exploration of complex biological questions, but this requires sophisticated imaging processing pipelines due to the low contrast and high object density. Deep learning-based methods are considered state-of-the-art for most computer vision problems but require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. To address this gap we present LIVECell, a high-quality, manually annotated and expert-validated dataset that is the largest of its kind to date, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its utility, we provide convolutional neural network-based models trained and evaluated on LIVECell.

How to access LIVECell

All images in LIVECell are available following this link (requires 1.3 GB). Annotations for the different experiments are linked below. To see a more details regarding benchmarks and how to use our models, see this link.

LIVECell-wide train and evaluate

Annotation set URL
Training set link
Validation set link
Test set link

Single cell-type experiments

Cell Type Training set Validation set Test set
A172 link link link
BT474 link link link
BV-2 link link link
Huh7 link link link
MCF7 link link link
SH-SHY5Y link link link
SkBr3 link link link
SK-OV-3 link link link

Dataset size experiments

Split URL
2 % link
4 % link
5 % link
25 % link
50 % link

Comparison to fluorescence-based object counts

The images and corresponding json-file with object count per image is available together with the raw fluorescent images the counts is based on.

Cell Type Images Counts Fluorescent images
A549 link link link
A172 link link link

Download all of LIVECell

The LIVECell-dataset and trained models is stored in an Amazon Web Services (AWS) S3-bucket. It is easiest to download the dataset if you have an AWS IAM-user using the AWS-CLI in the folder you would like to download the dataset to by simply:

aws s3 sync s3://livecell-dataset .

If you do not have an AWS IAM-user, the procedure is a little bit more involved. We can use curl to make an HTTP-request to get the S3 XML-response and save to files.xml:

files.xml ">
curl -H "GET /?list-type=2 HTTP/1.1" \
     -H "Host: livecell-dataset.s3.eu-central-1.amazonaws.com" \
     -H "Date: 20161025T124500Z" \
     -H "Content-Type: text/plain" http://livecell-dataset.s3.eu-central-1.amazonaws.com/ > files.xml

We then get the urls from files using grep:

)[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt ">
grep -oPm1 "(?<=
   
    )[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt

   

Then download the files you like using wget.

File structure

The top-level structure of the files is arranged like:

/livecell-dataset/
    ├── LIVECell_dataset_2021  
    |       ├── annotations/
    |       ├── models/
    |       ├── nuclear_count_benchmark/	
    |       └── images.zip  
    ├── README.md  
    └── LICENSE

LIVECell_dataset_2021/images

The images of the LIVECell-dataset are stored in /livecell-dataset/LIVECell_dataset_2021/images.zip along with their annotations in /livecell-dataset/LIVECell_dataset_2021/annotations/.

Within images.zip are the training/validation-set and test-set images are completely separate to facilitate fair comparison between studies. The images require 1.3 GB disk space unzipped and are arranged like:

images/
    ├── livecell_test_images
    |       └── 
   
    
    |               └── 
    
     _Phase_
     
      _
      
       _
       
        _
        
         .tif └── livecell_train_val_images └── 
          
         
        
       
      
     
    
   

Where is each of the eight cell-types in LIVECell (A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3, SKOV3). Wells are the location in the 96-well plate used to culture cells, indicates location in the well where the image was acquired, the time passed since the beginning of the experiment to image acquisition and index of the crop of the original larger image. An example image name is A172_Phase_C7_1_02d16h00m_2.tif, which is an image of A172-cells, grown in well C7 where the image is acquired in position 1 two days and 16 hours after experiment start (crop position 2).

LIVECell_dataset_2021/annotations/

The annotations of LIVECell are prepared for all tasks along with the training/validation/test splits used for all experiments in the paper. The annotations require 2.1 GB of disk space and are arranged like:

annotations/
    ├── LIVECell
    |       └── livecell_coco_
   
    .json
    ├── LIVECell_single_cells
    |       └── 
    
     
    |               └── 
     
      .json
    └── LIVECell_dataset_size_split
            └── 
      
       _train
       
        percent.json 
       
      
     
    
   
  • annotations/LIVECell contains the annotations used for the LIVECell-wide train and evaluate task.
  • annotations/LIVECell_single_cells contains the annotations used for Single cell type train and evaluate as well as the Single cell type transferability tasks.
  • annotations/LIVECell_dataset_size_split contains the annotations used to investigate the impact of training set scale.

All annotations are in Microsoft COCO Object Detection-format, and can for instance be parsed by the Python package pycocotools.

models/

ALL models trained and evaluated for tasks associated with LIVECell are made available for wider use. The models are trained using detectron2, Facebook's framework for object detection and instance segmentation. The models require 15 GB of disk space and are arranged like:

models/
   └── Anchor_
   
    
            ├── ALL/
            |    └──
    
     .pth
            └── 
     
      /
                 └──
      
       .pths
       

      
     
    
   

Where each .pth is a binary file containing the model weights.

configs/

The config files for each model can be found in the LIVECell github repo

LIVECell
    └── Anchor_
   
    
            ├── livecell_config.yaml
            ├── a172_config.yaml
            ├── bt474_config.yaml
            ├── bv2_config.yaml
            ├── huh7_config.yaml
            ├── mcf7_config.yaml
            ├── shsy5y_config.yaml
            ├── skbr3_config.yaml
            └── skov3_config.yaml

   

Where each config file can be used to reproduce the training done or in combination with our model weights for usage, for more info see the usage section.

nuclear_count_benchmark/

The images and fluorescence-based object counts are stored as the label-free images in a zip-archive and the corresponding counts in a json as below:

nuclear_count_benchmark/
    ├── A172.zip
    ├── A172_counts.json
    ├── A172_fluorescent_images.zip
    ├── A549.zip
    ├── A549_counts.json 
    └── A549_fluorescent_images.zip

The json files are on the following format:

": " " } ">
{
    "
     
      ": "
      
       "
}

      
     

Where points to one of the images in the zip-archive, and refers to the object count according fluorescent nuclear labels.

LICENSE

All images, annotations and models associated with LIVECell are published under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

All software source code associated associated with LIVECell are published under the MIT License.

Owner
Sartorius Corporate Research
Sartorius Corporate Research
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022