The mini-MusicNet dataset

Overview

mini-MusicNet

A music-domain dataset for multi-label classification

Music transcription is sequence-to-sequence prediction problem: given an audio performance, we must predict a corresponding sequence of notes. If we ignore correlations in the sequence of notes, music transcription simplifies to a multi-label classification problem. Given an audio performance, we are tasked with predicting the set of notes present in an audio performance at a given time. The mini-MusicNet dataset is derived from the MusicNet dataset, providing a scaled-down, pre-processed subset of MusicNet suitable for multi-label classification.

This repository provides information for downloading and interacting with mini-MusicNet, as well as some algorithmic baselines for multi-label classification with mini-MusicNet.

About mini-MusicNet

Download. The mini-MusicNet dataset can be downloaded here. To follow the tutorial in the next section or run explore.ipynb, please download mini-MusicNet to the minimusic sub-directory of the root of this repository.

This dataset consists of n = 82,500 data points with d = 4,096 features and k = 128 binary labels per datapoint. Each data point is an approximately 9ms audio clip: these clips are sampled at regular intervals from the underlying MusicNet dataset. Each clip is normalized to amplitudes in [-1,1]. The label on a datapoint is a binary k-dimensional (multi-hot) vector that indicates the notes being performed at the center of the audio clip. We define train, validation, and test splits with n = 62,500, 10,000, and 10,000 data points respectively. The mini-MusicNet dataset can be acquired here. Alternatively, you can use construct.py to reconstruct mini-MusicNet from a copy of MusicNet.

Exploring mini-MusicNet

To get started, let's load and visualize the training data. The contents of this section are summarized in the explore.ipynb notebook.

import numpy as np
import matplotlib.pyplot as plt

Xtrain = np.load('minimusic/audio-train.npy')
Ytrain = np.load('minimusic/labels-train.npy')

fig, ax = plt.subplots(1, 2, figsize=(10,2))
ax[0].set_title('Raw acoustic features')
ax[0].plot(Xtrain[0])
ax[1].set_title('Fourier transform of the raw features')
ax[1].plot(np.abs(np.fft.rfft(Xtrain[0])[0:256])) # clip to 256 features for easier visualization

Now let's see how linear (ridge) regression performs on the raw audio features. We'll measure results using average precision.

from sklearn.metrics import average_precision_score

Xtest = np.load('minimusic/audio-test.npy')
Ytest = np.load('minimusic/labels-test.npy')

R = .001
beta = np.dot(np.linalg.inv(np.dot(Xtrain.T,Xtrain) + R*np.eye(Xtrain.shape[1])),np.dot(Xtrain.T,Ytrain))

print('Train AP:', round(average_precision_score(Ytrain, np.dot(Xtrain, beta), average='micro'), 2))
print('Test AP:', round(average_precision_score(Ytest, np.dot(Xtest, beta), average='micro'), 2))

Train AP: 0.19 Test AP: 0.04

That's not so great. We can do much better by transforming our audio wave to the Fourier domain.

Xtrainfft = np.abs(np.fft.rfft(Xtrain))
Xtestfft = np.abs(np.fft.rfft(Xtest))

R = .001
beta = np.dot(np.linalg.inv(np.dot(Xtrainfft.T,Xtrainfft) + R*np.eye(Xtrainfft.shape[1])),np.dot(Xtrainfft.T,Ytrain))

print('Train AP:', round(average_precision_score(Ytrain, np.dot(Xtrainfft, beta), average='micro'), 2))
print('Test AP:', round(average_precision_score(Ytest, np.dot(Xtestfft, beta), average='micro'), 2))

Train AP: 0.57 Test AP: 0.47

Finally, it can often be more revealing to look at a precision-recall curve, rather than the scalar average precision (the area under the P/R curve). Let's see what our full P/R curve looks like for ridge regression on Fourier features.

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].set_title('Train P/R Curve')
plot_pr_curve(ax[0], Ytrain, np.dot(Xtrainfft, beta))
ax[1].set_title('Test P/R Curve')
plot_pr_curve(ax[1], Ytest, np.dot(Xtestfft, beta))

And that's enough to get us started! We hope that mini-MusicNet can be a useful resource for empirical work in multi-label classification.

References

For further information about MusicNet, or if you want to cite this work, please see:

@inproceedings{thickstun2017learning,
  author    = {John Thickstun and Zaid Harchaoui and Sham M. Kakade},
  title     = {Learning Features of Music from Scratch},
  booktitle = {International Conference on Learning Representations},
  year      = {2017},
}
Owner
John Thickstun
John Thickstun
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022