A brand new hub for Scene Graph Generation methods based on MMdetection (2021). The pipeline of from detection, scene graph generation to downstream tasks (e.g., image cpationing) is supported. Pytorch version implementation of HetH (ECCV 2020) and TopicSG (ICCV 2021) is included.

Overview

MMSceneGraph

LICENSE Python PyTorch

Introduction

MMSceneneGraph is an open source code hub for scene graph generation as well as supporting downstream tasks based on the scene graph on PyTorch. The frontend object detector is supported by open-mmlab/mmdetection.

demo image

Major features

  • Modular design

    We decompose the framework into different components and one can easily construct a customized scene graph generation framework by combining different modules.

  • Support of multiple frameworks out of box

    The toolbox directly supports popular and contemporary detection frameworks, e.g. Faster RCNN, Mask RCNN, etc.

  • Visualization support

    The visualization of the groundtruth/predicted scene graph is integrated into the toolbox.

License

This project is released under the MIT license.

Changelog

Please refer to CHANGELOG.md for details.

Benchmark and model zoo

The original object detection results and models provided by mmdetection are available in the model zoo. The models for the scene graph generation are temporarily unavailable yet.

Supported methods and Datasets

Supported SGG (VRD) methods:

  • Neural Motifs (CVPR'2018)
  • VCTree (CVPR'2019)
  • TDE (CVPR'2020)
  • VTransE (CVPR'2017)
  • IMP (CVPR'2017)
  • KERN (CVPR'2019)
  • GPSNet (CVPR'2020)
  • HetH (ECCV'2020, ours)
  • TopicSG (ICCV'2021, ours)

Supported saliency object detection methods:

  • R3Net (IJCAI'2018)
  • SCRN (ICCV'2019)

Supported image captioning methods:

  • bottom-up (CVPR'2018)
  • XLAN (CVPR'2020)

Supported datasets:

  • Visual Genome: VG150 (CVPR'2017)
  • VRD (ECCV'2016)
  • Visual Genome: VG200/VG-KR (ours)
  • MSCOCO (for object detection, image caption)
  • RelCap (from VG and COCO, ours)

Installation

As our project is built on mmdetection 1.x (which is a bit different from their current master version 2.x), please refer to INSTALL.md. If you want to use mmdetection 2.x, please refer to mmdetection/get_start.md.

Getting Started

Please refer to GETTING_STARTED.md for using the projects. We will update it constantly.

Acknowledgement

We appreciate the contributors of the mmdetection project and Scene-Graph-Benchmark.pytorch which inspires our design.

Citation

If you find this code hub or our works useful in your research works, please consider citing:

@inproceedings{wang2021topic,
  title={Topic Scene Graph Generation by Attention Distillation from Caption},
  author={Wang, Wenbin and Wang, Ruiping and Chen, Xilin},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  pages={15900--15910},
  month = {October},
  year={2021}
}


@inproceedings{wang2020sketching,
  title={Sketching Image Gist: Human-Mimetic Hierarchical Scene Graph Generation},
  author={Wang, Wenbin and Wang, Ruiping and Shan, Shiguang and Chen, Xilin},
  booktitle={Proceedings of European Conference on Computer Vision (ECCV)},
  pages={222--239},
  year={2020},
  volume={12358},
  doi={10.1007/978-3-030-58601-0_14},
  publisher={Springer}
}

@InProceedings{Wang_2019_CVPR,
author = {Wang, Wenbin and Wang, Ruiping and Shan, Shiguang and Chen, Xilin},
title = {Exploring Context and Visual Pattern of Relationship for Scene Graph Generation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {8188-8197},
month = {June},
address = {Long Beach, California, USA},
doi = {10.1109/CVPR.2019.00838},
year = {2019}
}
Owner
Kenneth-Wong
http://www.kennethwong.tech/
Kenneth-Wong
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus ο½€Chen 2 Jun 09, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023