Efficient 3D Backbone Network for Temporal Modeling

Overview

VoV3D

report PWC
VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast.

Diverse Temporal Aggregation and Depthwise Spatiotemporal Factorization for Efficient Video Classification
Youngwan Lee, Hyung-Il Kim, Kimin Yun, and Jinyoung Moon
Electronics and Telecommunications Research Institute (ETRI)
pre-print : https://arxiv.org/abs/2012.00317

Abstract

Video classification researches that have recently attracted attention are the fields of temporal modeling and 3D efficient architecture. However, the temporal modeling methods are not efficient or the 3D efficient architecture is less interested in temporal modeling. For bridging the gap between them, we propose an efficient temporal modeling 3D architecture, called VoV3D, that consists of a temporal one-shot aggregation (T-OSA) module and depthwise factorized component, D(2+1)D. The T-OSA is devised to build a feature hierarchy by aggregating temporal features with different temporal receptive fields. Stacking this T-OSA enables the network itself to model short-range as well as long-range temporal relationships across frames without any external modules. Inspired by kernel factorization and channel factorization, we also design a depthwise spatiotemporal factorization module, named, D(2+1)D that decomposes a 3D depthwise convolution into two spatial and temporal depthwise convolutions for making our network more lightweight and efficient. By using the proposed temporal modeling method (T-OSA), and the efficient factorized component (D(2+1)D), we construct two types of VoV3D networks, VoV3D-M and VoV3D-L. Thanks to its efficiency and effectiveness of temporal modeling, VoV3D-L has 6x fewer model parameters and 16x less computation, surpassing a state-of-the-art temporal modeling method on both Something-Something and Kinetics-400. Furthermore, VoV3D shows better temporal modeling ability than a state-of-the-art efficient 3D architecture, X3D having comparable model capacity. We hope that VoV3D can serve as a baseline for efficient video classification.

Main Result

Our results (X3D & VoV3D) are trained in the same environment.

  • V100 8 GPU machine
  • same training protocols (BASE_LR, LR_POLICY, batch size, etc)
  • pytorch 1.6
  • CUDA 10.1

*Please refer to our paper or configs files for the details.
*When you want to reproduce the same results, you just train the model with configs on the 8 GPU machine. If you change NUM_GPUS or TRAIN.BATCH_SIZE values, you have to adjust BASE_LR.
*IM and K-400 denote ImageNet and Kinetics-400, respectively.

Something-Something-V1

Model Backbone Pretrain #Frame Param. GFLOPs Top-1 Top-5 weight
TSM R-50 K-400 16 24.3M 33x6 48.3 78.1 link
TSM+TPN R-50 IM 8 N/A N/A 50.7 - link
TEA R-50 IM 16 24.4M 70x30 52.3 81.9 -
ip-CSN-152 - - 32 29.7M 74.0x10 49.3 - -
X3D M - 16 3.3M 6.1x6 46.4 75.3 link
VoV3D M - 16 3.3M 5.7x6 48.1 76.9 link
VoV3D M - 32 3.3M 11.5x6 49.8 78.0 link
VoV3D M K-400 32 3.3M 11.5x6 52.6 80.4 link
X3D L - 16 5.6M 9.1x6 47.0 76.4 link
VoV3D L - 16 5.8M 9.3x6 49.5 78.0 link
VoV3D L - 32 5.8M 20.9x6 50.6 78.7 link
VoV3D L K-400 32 5.8M 20.9x6 54.9 82.3 link

Something-Something-V2

Model Backbone Pretrain #Frame Param. GFLOPs Top-1 Top-5 weight
TSM R-50 K-400 16 24.3M 33x6 63.0 88.1 link
TSM+TPN R-50 IM 8 N/A N/A 64.7 - link
TEA R-50 IM 16 24.4M 70x30 65.1 89.9 -
SlowFast 16x8 R-50 K-400 64 34.0M 131.4x6 63.9 88.2 link
X3D M - 16 3.3M 6.1x6 63.0 87.9 link
VoV3D M - 16 3.3M 5.7x6 63.2 88.2 link
VoV3D M - 32 3.3M 11.5x6 64.2 88.8 link
VoV3D M K-400 32 3.3M 11.5x6 65.2 89.4 link
X3D L - 16 5.6M 9.1x6 62.7 87.7 link
VoV3D L - 16 5.8M 9.3x6 64.1 88.6 link
VoV3D L - 32 5.8M 20.9x6 65.8 89.5 link
VoV3D L K-400 32 5.8M 20.9x6 67.3 90.5 link

Kinetics-400

Model Backbone Pretrain #Frame Param. GFLOPs Top-1 Top-5 weight
X3D (PySlowFast, 300e) M - 16 3.8M 6.2x30 76.0 92.3 link
X3D (our, 256e) M - 16 3.8M 6.2x30 75.0 92.1 link
VoV3D M - 16 3.8M 4.4x30 73.9 91.6 link
X3D (PySlowfast) L - 16 6.1M 24.8x30 77.5 92.9 link
VoV3D L - 16 6.2M 9.3x30 76.3 92.9 link

*We note that since X3D-M (PySlowFast) was trained for 300 epochs, we re-train the X3D-M (our, 256e) with the same 256 epochs with VoV3D-M.

Installation & Data Preparation

Please refer to INSTALL.md for installation and DATA.md for data preparation.
Important : We used depthwise 3D Conv pytorch patch for accelearating GPU runtime.

Training & Evaluation

We provide brief examples for getting started. If you want to know more details, please refer to instruction of PySlowFast.

Training

from scratch

  • VoV3D-L on Kinetics-400
python tools/run_net.py \
  --cfg configs/Kinetics/vov3d/vov3d_L.yaml \
  DATA.PATH_TO_DATA_DIR path/to/your/kinetics \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 64

You can also designate each argument in the config file. If you want to train with our default setting (e.g., 8GPUs, 64 batch size, etc), you just use this command. (Set DATA.PATH_TO_DATA_DIR with your real data path)

python tools/run_net.py --cfg configs/Kinetics/vov3d/vov3d_L.yaml
  • VoV3D-L on Something-Something-V1
python tools/run_net.py \
  --cfg configs/SSv1/vov3d/vov3d_L_F16.yaml \
  DATA.PATH_TO_DATA_DIR path/to/your/ssv1 \ 
  DATA.PATH_PREFIX path/to/your/ssv1

Finetuning by using Kinetics-400 pretrained weight.

First, you have to download the weights pretrained on Kinetics-400.

One thing you should keep in mind is that TRAIN.CHECKPOINT_FILE_PATH is the downloaded weight.

For Something-Something-V2,

cd VoV3D
mkdir -p output/pretrained
wget https://dl.dropbox.com/s/lzmq8d4dqyj8fj6/vov3d_L_k400.pth

python tools/run_net.py \
  --cfg configs/SSv2/vov3d/finetune/vov3d_L_F16.yaml \
  TRAIN.CHECKPOINT_FILE_PATH path/to/the/pretrained/vov3d_L_k400.pth \
  DATA.PATH_TO_DATA_DIR path/to/your/ssv2 \
  DATA.PATH_PREFIX path/to/your/ssv2

Testing

When testing, you have to set TRAIN.ENABLE to False and TEST.CHECKPOINT_FILE_PATH to path/to/your/checkpoint.

python tools/run_net.py \
  --cfg configs/Kinetics/vov3d/vov3d_L.yaml \
  TRAIN.ENABLE False \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint

If you want to test with single clip and single-crop, set TEST.NUM_ENSEMBLE_VIEWS and TEST.NUM_SPATIAL_CROPS to 1, respectively.

python tools/run_net.py \
  --cfg configs/Kinetics/vov3d/vov3d_L.yaml \
  TRAIN.ENABLE False \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TEST.NUM_ENSEMBLE_VIEWS 1 \
  TEST.NUM_SPATIAL_CROPS 1

For Kinetics-400, 30-views : TEST.NUM_ENSEMBLE_VIEWS 10 & TEST.NUM_SPATIAL_CROPS 3
For Something-Something, 6-views : TEST.NUM_ENSEMBLE_VIEWS 2 & TEST.NUM_SPATIAL_CROPS 3

License

The code and the models in this repo are released under the CC-BY-NC4.0 LICENSE. See the LICENSE file.

Citing VoV3D

@article{lee2020vov3d,
  title={Diverse Temporal Aggregation and Depthwise Spatiotemporal Factorization for Efficient Video Classification},
  author={Lee, Youngwan and Kim, Hyung-Il and Yun, Kimin and Moon, Jinyoung},
  journal={arXiv preprint arXiv:2012.00317},
  year={2020}
}

@inproceedings{lee2019energy,
  title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection},
  author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul},
  booktitle = {CVPR Workshop},
  year = {2019}
}

@inproceedings{lee2020centermask,
  title={CenterMask: Real-Time Anchor-Free Instance Segmentation},
  author={Lee, Youngwan and Park, Jongyoul},
  booktitle={CVPR},
  year={2020}
}

Acknowledgement

We appreciate developers of PySlowFast for such wonderful framework.
This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. B0101-15-0266, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis and No. 2020-0-00004, Development of Previsional Intelligence based on Long-term Visual Memory Network).

This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022