A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

Related tags

Deep LearningIconQA
Overview

IconQA

License: CC BY-SA 4.0

About

IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and comprehensive cognitive reasoning in real-world problems.

iconqa examples

There are three different sub-tasks in IconQA:

  • 57,672 image choice MC questions
  • 31,578 text chioce MC questions
  • 18,189 fill-in-the-blank questions
Sub-Tasks Train Validation Test Total
Multi-image-choice 34,603 11,535 11,535 57,672
Multi-text-choice 18,946 6,316 6,316 31,578
Filling-in-the-blank 10,913 3,638 3,638 18,189

In addition to IconQA, we also present Icon645, a large-scale dataset of icons that cover a wide range of objects:

  • 645,687 colored icons
  • 377 different icon classes

icon_examples

For more details, you can find our website here and our paper here.

Download

Our dataset is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Please read the license before you use, change, or share our dataset.

You can download IconQA here. Or run the commands by:

cd data
wget https://iconqa2021.s3.us-west-1.amazonaws.com/iconqa.zip
unzip iconqa.zip

You can download Icon645 here. Or run the commands by:

cd data
wget https://iconqa2021.s3.us-west-1.amazonaws.com/icon645.zip
unzip icon645.zip

File structures for the IconQA dataset:

IconQA
|   LICENSE.md
|   metadata.json
|   pid2skills.json
|   pid_splits.json
|   problems.json
|   skills.json
└───test
│   │
│   └───choose_img
│   |   |
│   |   └───question_id
│   |   |   |   image.png
|   |   |   |   data.json
|   |   |   |   choice_0.png
|   |   |   |   choice_1.png
|   |   |   |   ...
|   |   |
|   |   └───question_id
|   |   |   ...
|   |   
|   └───choose_txt
|   |   |  
|   |   └───question_id
|   |   |   |   image.png
|   |   |   |   data.json
|   |   | 
|   |   └───question_id
|   |   |   ...
|   |
|   └───fill_in_blank
|       |  
|       └───question_id
|       |   |   image.png
|       |   |   data.json
|       | 
|       └───question_id
|       |   ...
|   
└───train
|   |   same as test
|   
└───val
    |   same as test

File structures for the Icon645 dataset:

Icon645
|   LICENCE.md
|   metadata.json
└───colored_icons_final
    |
    └───acorn
    |   |   image_id1.png
    |   |   image_id2.png
    |   |   ...
    |   
    └───airplane
    |   |   image_id3.png
    |   |   ...
    |      
    |   ...

Citation

If the paper or the dataset inspires you, please cite us:

@inproceedings{lu2021iconqa,
  title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning},
  author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun},
  booktitle = {Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year = {2021}
}

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Pan Lu
Computer Science
Pan Lu
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022