Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Overview

论文名称:Image Super-Resolution Using Very Deep Residual Channel Attention Networks

目录

1. 简介
2. 数据集和复现精度
3. 开始使用
4. 代码结构与详细说明
5. 复现模型超分效果
5. 复现模型相关信息

1. 简介

本项目复现的论文是Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu, 发表在ECCV 2018上的论文。 作者提出了一个深度残差通道注意力网络(RCAN)。特别地,作者设计了一个残差中的残差(RIR)结构来构造深层网络,每个 RIR 结构由数个残差组(RG)以及长跳跃连接(LSC)组成,每个 RG 则包含一些残差块和短跳跃连接(SSC)。RIR 结构允许丰富的低频信息通过多个跳跃连接直接进行传播,使主网络专注于学习高频信息。此外,我们还提出了一种通道注意力机制(CA),通过考虑通道之间的相互依赖性来自适应地重新调整特征。

论文: 《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》

参考repo: RCAN

在此非常感谢yulunzhang、MaFuyan、joaoherrera等人贡献的RCAN,提高了本项目的复现效率。

aistudio体验教程: 使用PaddleGAN复现RCAN

2. 数据集和复现精度

本项目所用到的训练集以及测试集包括相应的下载地址如下:

Name 数据集 数据描述 下载
2K Resolution DIV2K proposed in NTIRE17 (800 train and 100 validation) official website
Classical SR Testing Set5 Set5 test dataset Google Drive / Baidu Drive
Classical SR Testing Set14 Set14 test dataset Google Drive / Baidu Drive

数据集DIV2K, Set5 和 Set14 的组成形式如下:

  PaddleGAN
    ├── data
        ├── DIV2K
              ├── DIV2K_train_HR
              ├── DIV2K_train_LR_bicubic
              |    ├──X2
              |    ├──X3
              |    └──X4
              ├── DIV2K_valid_HR
              ├── DIV2K_valid_LR_bicubic
        ├── Set5
              ├── GTmod12
              ├── LRbicx2
              ├── LRbicx3
              ├── LRbicx4
              └── original
        ├── Set14
              ├── GTmod12
              ├── LRbicx2
              ├── LRbicx3
              ├── LRbicx4
              └── original
            ...

论文中模型(torch框架下训练)在Set14与Set5精度与使用paddle复现模型的精度对比:

框架 Set14
paddle 29.02 / 0.7910
torch 28.98 / 0.7910

Paddle模型(.pdparams)下载

模型 数据集 下载地址 提取码
rcan_x4 DIV2K rcan_x4 1ry9

3. 开始使用

3.1 准备环境

  • 硬件: Tesla V100 * 1
  • 框架:
    • PaddlePaddle >= 2.1.0
    • tqdm
    • PyYAML>=5.1
    • scikit-image>=0.14.0
    • scipy>=1.1.0
    • opencv-python
    • imageio==2.9.0
    • imageio-ffmpeg
    • librosa
    • numba==0.53.1
    • natsort
    • munch
    • easydict

将本项目git clone之后进入项目,使用pip install -r requirements.txt安装依赖即可。

3.2 快速开始

第一步:克隆本项目

# clone this repo
git clone https://github.com/kongdebug/RCAN-Paddle.git
cd RCAN-Paddle

第二步:安装依赖项

pip install -r requirements.txt

第三步:开始训练

单卡训练:

python -u tools/main.py --config-file configs/rcan_x4_div2k.yaml

由于本项目没有使用多卡训练,故不提供相关代码。 如使您想使用自己的数据集以及测试集,需要在配置文件中修改数据集为您自己的数据集。

如果训练断掉,想接着训练:

python -u tools/main.py --config-file configs/rcan_x4_div2k.yaml --resume ${PATH_OF_CHECKPOINT}

第四步:测试

  • 输出预测图像
    • 可以通过第二部分拿到paddle复现的模型,放入一个文件夹中,运行如下程序,得到模型的测试结果
    • Fig/visual文件夹中有预测结果,可直接用于精度评价
python -u tools/main.py --config-file configs/rcan_x4_div2k.yaml --evaluate-only --load ${PATH_OF_WEIGHT}
  • 对预测图像精度评价
    • 运行以上代码后,在output_dir文件夹中得到模型得预测结果,然后运行如下代码进行精度评定。注:--gt_dir与 output_dir两个参数得设置需要对应自己的实际路径。
python  tools/cal_psnr_ssim.py  --gt_dir data/Set14/GTmod12 --output_dir output_dir/rcan_x4_div2k*/visual_test

4. 代码结构与详细说明

4.1 代码结构

├─applications                          
├─benchmark                        
├─deploy                         
├─configs                          
├─data                        
├─output_dir                         
├─ppgan       
├─tools
├─test_tipc
├─Figs
│  README_cn.md                     
│  requirements.txt                      
│  setup.py                                         

4.2 结构说明

本项目基于PaddleGAN开发。configs文件夹中的rcan_x4_div2k.yaml是训练的配置文件,格式沿袭PaddleGAN中的SISR任务,参数设置与论文一致。data文件夹存放训练数据以及 测试数据。output_dir文件夹存放运行过程中输出的文件,一开始为空。test_tipc是用于导出模型预测,以及 TIPC测试的文件夹。

4.3 导出模型部署

  • 训练结束后得到rcan_checkpoint.pdparams文件,需要进行导出inference的步骤。
python3.7 tools/export_model.py -c configs/rcan_x4_div2k.yaml --inputs_size="-1,3,-1,-1" --load output_dir/rcan_checkpoint.pdparams --output_dir ./test_tipc/output/rcan_x4
  • 得到以上模型文件之后,基于PaddleInference对待预测推理的测试数据进行预测。
    • 将上一步导出的inference文件(.pdmodel、.pdiparams以及.pdiparams.info )均放入test_tipc/output/rcan_x4文件夹,注:文件名称均为basesrmodel_generator
    • 运行以下命令,在test_tipc/output/文件夹中得到预测结果
python3.7 tools/inference.py --model_type rcan --seed 123 -c configs/rcan_x4_div2k.yaml --output_path test_tipc/output/ --device=gpu --model_path=./test_tipc/output/rcan_x4/basesrmodel_generator

4.5 TIPC测试支持

test_tipc文件夹下文结构

test_tipc/
├── configs/  # 配置文件目录
    ├── rcan    
        ├── train_infer_python.txt      # 测试Linux上python训练预测(基础训练预测)的配置文件
        ├── train_infer_python_resume.txt      # 加载模型的(基础训练预测)的配置文件
├── output/   # 预测结果
├── common_func.sh    # 基础功能程序
├── prepare.sh                        # 需要的数据和模型下载
├── test_train_inference_python.sh    # 测试python训练预测的主程序
├── readme.md                # TIPC基础链接测试需要安装的依赖说明

注意: 本项目仅提供TIPC基础测试链条中模式lite_train_lite_infer的代码与文档。运行之前先使用vim查看.sh文件的filemode,需要为“filemode=unix"格式。

如果没有准备训练数据,可以运行prepare.sh下载训练数据DIV2K,然后对其解压,调整文件组织如第二部分所示; 如果已经准备好数据,运行如下命令完成TIPC基础测试:

  • 从头开始:
 bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/rcan/train_infer_python.txt 'lite_train_lite_infer'

这里需要注意,这里测试训练时所用的配置文件为configs文件夹下专门为从头开始的lite_train_lite_infer模式设置 的rcan_x4_div2k_tipc.yaml文件,没有加载训练好的模型而是从头训练,所以loss会很高。运行得到的结果在output 文件夹中,项目中该文件夹已放入先前运行得到的日志文件。

  • 加载已训练模型:
    • 将下载的rcan_checkpoint.pdparams模型文件,放入output_dir文件夹下,并改名为iter_238000_checkpoint.pdparams
    • 这里测试需要用的configs文件夹下的rcan_x4_div2k.yaml文件以及train_infer_python_resume.txt文件
    • 运行以下命令:
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/rcan/train_infer_python_resume.txt 'lite_train_lite_infer'

按照”加载已训练模型“的命令运行之后,最后会得到inference预测的结果图以及精度评价,可以看到psnr与ssim均达标。

5.复现模型超分效果

低分辨率 超分重建后 高分辨率

6.复现模型相关信息

相关信息:

信息 描述
作者 不想科研的Key.L
日期 2021年11月
框架版本 PaddlePaddle==2.2.0
应用场景 图像超分
硬件支持 GPU、CPU
在线体验 notebook
Owner
kongdebug
kongdebug
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022