ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Related tags

Deep Learningactnn
Overview

ActNN : Activation Compressed Training

This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training by Jianfei Chen*, Lianmin Zheng*, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney, and Joseph E. Gonzalez.

TL; DR. ActNN is a PyTorch library for memory-efficient training. It reduces the training memory footprint by compressing the saved activations. ActNN is implemented as a collection of memory-saving layers. These layers have an identical interface to their PyTorch counterparts.

Abstract

The increasing size of neural network models has been critical for improvements in their accuracy, but device memory is not growing at the same rate. This creates fundamental challenges for training neural networks within limited memory environments. In this work, we propose ActNN, a memory-efficient training framework that stores randomly quantized activations for back propagation. We prove the convergence of ActNN for general network architectures, and we characterize the impact of quantization on the convergence via an exact expression for the gradient variance. Using our theory, we propose novel mixed-precision quantization strategies that exploit the activation's heterogeneity across feature dimensions, samples, and layers. These techniques can be readily applied to existing dynamic graph frameworks, such as PyTorch, simply by substituting the layers. We evaluate ActNN on mainstream computer vision models for classification, detection, and segmentation tasks. On all these tasks, ActNN compresses the activation to 2 bits on average, with negligible accuracy loss. ActNN reduces the memory footprint of the activation by 12×, and it enables training with a 6.6× to 14× larger batch size.

mem_speed_r50 Batch size vs. training throughput on ResNet-50. Red cross mark means out-of-memory. The shaded yellow region denotes the possible batch sizes with full precision training. ActNN achieves significantly larger maximum batch size over other state-of-the-art systems and displays a nontrivial trade-off curve.

Install

  • Requirements
torch>=1.7.1
torchvision>=0.8.2
  • Build
cd actnn
pip install -v -e .

Usage

mem_speed_benchmark/train.py is an example on using ActNN for models from torchvision.

Basic Usage

  • Step1: Configure the optimization level
    ActNN provides several optimization levels to control the trade-off between memory saving and computational overhead. You can set the optimization level by
import actnn
# available choices are ["L0", "L1", "L2", "L3", "L4", "L5"]
actnn.set_optimization_level("L3")

See set_optimization_level for more details.

  • Step2: Convert the model to use ActNN's layers.
model = actnn.QModule(model)

Note:

  1. Convert the model before calling .cuda().
  2. Set the optimization level before invoking actnn.QModule or constructing any ActNN layers.
  3. Automatic model conversion only works with standard PyTorch layers. Please use the modules (nn.Conv2d, nn.ReLU, etc.), not the functions (F.conv2d, F.relu).
  • Step3: Print the model to confirm that all the modules (Conv2d, ReLU, BatchNorm) are correctly converted to ActNN layers.
print(model)    # Should be actnn.QConv2d, actnn.QBatchNorm2d, etc.

Advanced Features

  • Convert the model manually.
    ActNN is implemented as a collection of memory-saving layers, including actnn.QConv1d, QConv2d, QConv3d, QConvTranspose1d, QConvTranspose2d, QConvTranspose3d, QBatchNorm1d, QBatchNorm2d, QBatchNorm3d, QLinear, QReLU, QSyncBatchNorm, QMaxPool2d. These layers have identical interface to their PyTorch counterparts. You can construct the model manually using these layers as the building blocks. See ResNetBuilder and resnet_configs in image_classification/image_classification/resnet.py for example.
  • (Optional) Change the data loader
    If you want to use per-sample gradient information for adaptive quantization, you have to update the dataloader to return sample indices. You can see train_loader in mem_speed_benchmark/train.py for example. In addition, you have to update the configurations.
from actnn import config, QScheme
config.use_gradient = True
QScheme.num_samples = 1300000   # the size of training set

You can find sample code in the above script.

Examples

Benchmark Memory Usage and Training Speed

See mem_speed_benchmark. Please do NOT measure the memory usage by nvidia-smi. nvidia-smi reports the size of the memory pool allocated by PyTorch, which can be much larger than the size of acutal used memory.

Image Classification

See image_classification

Object Detection, Semantic Segmentation, Self-Supervised Learning, ...

Here is the example memory-efficient training for ResNet50, built upon the OpenMMLab toolkits. We use ActNN with the default optimization level (L3). Our training runs are available at Weights & Biases.

Installation

  1. Install mmcv
export MMCV_ROOT=/path/to/clone/actnn-mmcv
git clone https://github.com/DequanWang/actnn-mmcv $MMCV_ROOT
cd $MMCV_ROOT
MMCV_WITH_OPS=1 MMCV_WITH_ORT=0 pip install -e .
  1. Install mmdet, mmseg, mmssl, ...
export MMDET_ROOT=/path/to/clone/actnn-mmdet
git clone https://github.com/DequanWang/actnn-mmdet $MMDET_ROOT
cd $MMDET_ROOT
python setup.py develop
export MMSEG_ROOT=/path/to/clone/actnn-mmseg
git clone https://github.com/DequanWang/actnn-mmseg $MMSEG_ROOT
cd $MMSEG_ROOT
python setup.py develop
export MMSSL_ROOT=/path/to/clone/actnn-mmssl
git clone https://github.com/DequanWang/actnn-mmssl $MMSSL_ROOT
cd $MMSSL_ROOT
python setup.py develop

Single GPU training

cd $MMDET_ROOT
python tools/train.py configs/actnn/faster_rcnn_r50_fpn_1x_coco_1gpu.py
# https://wandb.ai/actnn/detection/runs/ye0aax5s
# ActNN mAP 37.4 vs Official mAP 37.4
python tools/train.py configs/actnn/retinanet_r50_fpn_1x_coco_1gpu.py
# https://wandb.ai/actnn/detection/runs/1x9cwokw
# ActNN mAP 36.3 vs Official mAP 36.5
cd $MMSEG_ROOT
python tools/train.py configs/actnn/fcn_r50-d8_512x1024_80k_cityscapes_1gpu.py
# https://wandb.ai/actnn/segmentation/runs/159if8da
# ActNN mIoU 72.9 vs Official mIoU 73.6
python tools/train.py configs/actnn/fpn_r50_512x1024_80k_cityscapes_1gpu.py
# https://wandb.ai/actnn/segmentation/runs/25j9iyv3
# ActNN mIoU 74.7 vs Official mIoU 74.5

Multiple GPUs training

cd $MMSSL_ROOT
bash tools/dist_train.sh configs/selfsup/actnn/moco_r50_v2_bs512_e200_imagenet_2gpu.py 2
# https://wandb.ai/actnn/mmssl/runs/lokf7ydo
# https://wandb.ai/actnn/mmssl/runs/2efmbuww
# ActNN top1 67.3 vs Official top1 67.7

For more detailed guidance, please refer to the docs of mmcv, mmdet, mmseg, mmssl.

FAQ

  1. Does ActNN supports CPU training?
    Currently, ActNN only supports CUDA.

  2. Accuracy degradation / diverged training with ActNN.
    ActNN applies lossy compression to the activations. In some challenging cases, our default compression strategy might be too aggressive. In this case, you may try more conservative compression strategies (which consume more memory):

    • 4-bit per-group quantization
    actnn.set_optimization_level("L2")
    • 8-bit per-group quantization
    actnn.set_optimization_level("L2")
    actnn.config.activation_compression_bits = [8]

    If none of these works, you may report to us by creating an issue.

Correspondence

Please email Jianfei Chen and Lianmin Zheng. Any questions or discussions are welcomed!

Citation

If the actnn library is helpful in your research, please consider citing our paper:

@article{chen2021actnn,
  title={ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training},
  author={Chen, Jianfei and Zheng, Lianmin and Yao, Zhewei and Wang, Dequan and Stoica, Ion and Mahoney, Michael W and Gonzalez, Joseph E},
  journal={arXiv preprint arXiv:2104.14129},
  year={2021}
}
Owner
UC Berkeley RISE
REAL-TIME INTELLIGENT SECURE EXPLAINABLE SYSTEMS
UC Berkeley RISE
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022