Semantic Bottleneck Scene Generation

Related tags

Deep LearningSB-GAN
Overview

SB-GAN

Semantic Bottleneck Scene Generation

Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the flexibility of unconditional generative models, we propose a semantic bottleneck GAN model for unconditional synthesis of complex scenes. We assume pixel-wise segmentation labels are available during training and use them to learn the scene structure. During inference, our model first synthesizes a realistic segmentation layout from scratch, then synthesizes a realistic scene conditioned on that layout. For the former, we use an unconditional progressive segmentation generation network that captures the distribution of realistic semantic scene layouts. For the latter, we use a conditional segmentation-to-image synthesis network that captures the distribution of photo-realistic images conditioned on the semantic layout. When trained end-to-end, the resulting model outperforms state-of-the-art generative models in unsupervised image synthesis on two challenging domains in terms of the Frechet Inception Distance and user-study evaluations. Moreover, we demonstrate the generated segmentation maps can be used as additional training data to strongly improve recent segmentation-to-image synthesis networks.

Paper

[Paper 3.5MB]  [arXiv]

Code

Prerequisites:

  • NVIDIA GPU + CUDA CuDNN
  • Python 3.6
  • PyTorch 1.0
  • Please install dependencies by
pip install -r requirements.txt

Preparation

  • Clone this repo with its submodules
git clone --recurse-submodules -j8 https://github.com/azadis/SB-GAN.git
cd SB-GAN/SPADE/models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../../

Datasets

ADE-Indoor

  • To have access to the indoor images from the ADE20K dataset and their corresponding segmentation maps used in our paper:
cd SB-GAN
bash SBGAN/datasets/download_ade.sh
cd ..

Cityscapes

cd SB-GAN/SBGAN/datasets
mkdir cityscapes
cd cityscapes
  • Download and unzip leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip from the Cityscapes webpage .
mv leftImg8bit_trainvaltest/leftImg8bit ./
mv gtFine_trainvaltest/gtFine ./

Cityscapes-25k

  • In addition to the 5K portion already downloaded, download and unzip leftImg8bit_trainextra.zip. You can have access to the fine annotations of these 20K images we used in our paper by:
wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/drn_d_105_000_test.tar.gz
tar -xzvf drn_d_105_000_test.tar.gz

These annotations are predicted by a DRN trained on the 5K fine-annotated portion of Cityscapes with 19 semantic categories. The new fine annotations of the 5K portion with 19 semantic classes can be also downloaded by:

wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/gtFine_new.tar.gz
tar -xzvf gtFine_new.tar.gz
cd ../../../..

Training

cd SB-GAN/SBGAN

  • On each $dataset in ade_indoor, cityscapes, cityscapes_25k:
  1. Semantic bottleneck synthesis:
bash SBGAN/scipts/$dataset/train_progressive_seg.sh
  1. Semantic image synthesis:
cd ../SPADE
bash scripts/$dataset/train_spade.sh
  1. Train the end2end SBGAN model:
cd ../SBGAN
bash SBGAN/scripts/$dataset/train_finetune_end2end.sh
  • In the above script, set $pro_iter to the iteration number of the checkpoint saved from step 1 that you want to use before fine-tuning. Also, set $spade_epoch to the last epoch saved for SPADE from step 2.
  • To visualize the training you have started in steps 1 and 3 on a ${date-time}, run the following commands. Then, open http://localhost:6006/ on your web browser.
cd SBGAN/logs/${date-time}
tensorboard --logdir=. --port=6006

Testing

To compute FID after training the end2end model, for each $dataset, do:

bash SBGAN/scripts/$dataset/test_finetune_end2end.sh
  • In the above script, set $pro_iter and $spade_epoch to the appropriate checkpoints saved from your end2end training.

Citation

If you use this code, please cite our paper:

@article{azadi2019semantic,
  title={Semantic Bottleneck Scene Generation},
  author={Azadi, Samaneh and Tschannen, Michael and Tzeng, Eric and Gelly, Sylvain and Darrell, Trevor and Lucic, Mario},
  journal={arXiv preprint arXiv:1911.11357},
  year={2019}
}
Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022