[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Overview

Rethinking the Value of Labels for Improving Class-Imbalanced Learning

This repository contains the implementation code for paper:
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
Yuzhe Yang, and Zhi Xu
34th Conference on Neural Information Processing Systems (NeurIPS), 2020
[Website] [arXiv] [Paper] [Slides] [Video]

If you find this code or idea useful, please consider citing our work:

@inproceedings{yang2020rethinking,
  title={Rethinking the Value of Labels for Improving Class-Imbalanced Learning},
  author={Yang, Yuzhe and Xu, Zhi},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

Overview

In this work, we show theoretically and empirically that, both semi-supervised learning (using unlabeled data) and self-supervised pre-training (first pre-train the model with self-supervision) can substantially improve the performance on imbalanced (long-tailed) datasets, regardless of the imbalanceness on labeled/unlabeled data and the base training techniques.

Semi-Supervised Imbalanced Learning: Using unlabeled data helps to shape clearer class boundaries and results in better class separation, especially for the tail classes. semi

Self-Supervised Imbalanced Learning: Self-supervised pre-training (SSP) helps mitigate the tail classes leakage during testing, which results in better learned boundaries and representations. self

Installation

Prerequisites

Dependencies

  • PyTorch (>= 1.2, tested on 1.4)
  • yaml
  • scikit-learn
  • TensorboardX

Code Overview

Main Files

Main Arguments

  • --dataset: name of chosen long-tailed dataset
  • --imb_factor: imbalance factor (inverse value of imbalance ratio \rho in the paper)
  • --imb_factor_unlabel: imbalance factor for unlabeled data (inverse value of unlabel imbalance ratio \rho_U)
  • --pretrained_model: path to self-supervised pre-trained models
  • --resume: path to resume checkpoint (also for evaluation)

Getting Started

Semi-Supervised Imbalanced Learning

Unlabeled data sourcing

CIFAR-10-LT: CIFAR-10 unlabeled data is prepared following this repo using the 80M TinyImages. In short, a data sourcing model is trained to distinguish CIFAR-10 classes and an "non-CIFAR" class. For each class, images are then ranked based on the prediction confidence, and unlabeled (imbalanced) datasets are constructed accordingly. Use the following link to download the prepared unlabeled data, and place in your data_path:

SVHN-LT: Since its own dataset contains an extra part with 531.1K additional (labeled) samples, they are directly used to simulate the unlabeled dataset.

Note that the class imbalance in unlabeled data is also considered, which is controlled by --imb_factor_unlabel (\rho_U in the paper). See imbalance_cifar.py and imbalance_svhn.py for details.

Semi-supervised learning with pseudo-labeling

To perform pseudo-labeling (self-training), first a base classifier is trained on original imbalanced dataset. With the trained base classifier, pseudo-labels can be generated using

python gen_pseudolabels.py --resume <ckpt-path> --data_dir <data_path> --output_dir <output_path> --output_filename <save_name>

We provide generated pseudo label files for CIFAR-10-LT & SVHN-LT with \rho=50, using base models trained with standard cross-entropy (CE) loss:

To train with unlabeled data, for example, on CIFAR-10-LT with \rho=50 and \rho_U=50

python train_semi.py --dataset cifar10 --imb_factor 0.02 --imb_factor_unlabel 0.02

Self-Supervised Imbalanced Learning

Self-supervised pre-training (SSP)

To perform Rotation SSP on CIFAR-10-LT with \rho=100

python pretrain_rot.py --dataset cifar10 --imb_factor 0.01

To perform MoCo SSP on ImageNet-LT

python pretrain_moco.py --dataset imagenet --data <data_path>

Network training with SSP models

Train on CIFAR-10-LT with \rho=100

python train.py --dataset cifar10 --imb_factor 0.01 --pretrained_model <path_to_ssp_model>

Train on ImageNet-LT / iNaturalist 2018

python -m imagenet_inat.main --cfg <path_to_ssp_config> --model_dir <path_to_ssp_model>

Results and Models

All related data and checkpoints can be found via this link. Individual results and checkpoints are detailed as follows.

Semi-Supervised Imbalanced Learning

CIFAR-10-LT

Model Top-1 Error Download
CE + [email protected] (\rho=50 and \rho_U=1) 16.79 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=25) 16.88 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=50) 18.36 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=100) 19.94 ResNet-32

SVHN-LT

Model Top-1 Error Download
CE + [email protected] (\rho=50 and \rho_U=1) 13.07 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=25) 13.36 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=50) 13.16 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=100) 14.54 ResNet-32

Test a pretrained checkpoint

python train_semi.py --dataset cifar10 --resume <ckpt-path> -e

Self-Supervised Imbalanced Learning

CIFAR-10-LT

  • Self-supervised pre-trained models (Rotation)

    Dataset Setting \rho=100 \rho=50 \rho=10
    Download ResNet-32 ResNet-32 ResNet-32
  • Final models (200 epochs)

    Model \rho Top-1 Error Download
    CE(Uniform) + SSP 10 12.28 ResNet-32
    CE(Uniform) + SSP 50 21.80 ResNet-32
    CE(Uniform) + SSP 100 26.50 ResNet-32
    CE(Balanced) + SSP 10 11.57 ResNet-32
    CE(Balanced) + SSP 50 19.60 ResNet-32
    CE(Balanced) + SSP 100 23.47 ResNet-32

CIFAR-100-LT

  • Self-supervised pre-trained models (Rotation)

    Dataset Setting \rho=100 \rho=50 \rho=10
    Download ResNet-32 ResNet-32 ResNet-32
  • Final models (200 epochs)

    Model \rho Top-1 Error Download
    CE(Uniform) + SSP 10 42.93 ResNet-32
    CE(Uniform) + SSP 50 54.96 ResNet-32
    CE(Uniform) + SSP 100 59.60 ResNet-32
    CE(Balanced) + SSP 10 41.94 ResNet-32
    CE(Balanced) + SSP 50 52.91 ResNet-32
    CE(Balanced) + SSP 100 56.94 ResNet-32

ImageNet-LT

  • Self-supervised pre-trained models (MoCo)
    [ResNet-50]

  • Final models (90 epochs)

    Model Top-1 Error Download
    CE(Uniform) + SSP 54.4 ResNet-50
    CE(Balanced) + SSP 52.4 ResNet-50
    cRT + SSP 48.7 ResNet-50

iNaturalist 2018

  • Self-supervised pre-trained models (MoCo)
    [ResNet-50]

  • Final models (90 epochs)

    Model Top-1 Error Download
    CE(Uniform) + SSP 35.6 ResNet-50
    CE(Balanced) + SSP 34.1 ResNet-50
    cRT + SSP 31.9 ResNet-50

Test a pretrained checkpoint

# test on CIFAR-10 / CIFAR-100
python train.py --dataset cifar10 --resume <ckpt-path> -e

# test on ImageNet-LT / iNaturalist 2018
python -m imagenet_inat.main --cfg <path_to_ssp_config> --model_dir <path_to_model> --test

Acknowledgements

This code is partly based on the open-source implementations from the following sources: OpenLongTailRecognition, classifier-balancing, LDAM-DRW, MoCo, and semisup-adv.

Contact

If you have any questions, feel free to contact us through email ([email protected] & [email protected]) or Github issues. Enjoy!

Owner
Yuzhe Yang
Ph.D. student at MIT CSAIL
Yuzhe Yang
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022