A collection of implementations of deep domain adaptation algorithms

Overview

Deep Transfer Learning on PyTorch

MIT License

This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervised Domain Adaptation (SUDA) and Multi-source Unsupervised Domain Adaptation (MUDA). There are many SUDA methods, however I find there is a few MUDA methods with deep learning. Besides, MUDA with deep learning might be a more promising direction for domain adaptation.

Here I have implemented some deep transfer methods as follows:

  • UDA
    • DDC:Deep Domain Confusion Maximizing for Domain Invariance
    • DAN: Learning Transferable Features with Deep Adaptation Networks (ICML2015)
    • Deep Coral: Deep CORAL Correlation Alignment for Deep Domain Adaptation (ECCV2016)
    • Revgrad: Unsupervised Domain Adaptation by Backpropagation (ICML2015)
    • MRAN: Multi-representation adaptation network for cross-domain image classification (Neural Network 2019)
    • DSAN: Deep Subdomain Adaptation Network for Image Classification (IEEE Transactions on Neural Networks and Learning Systems 2020)
  • MUDA
    • Aligning Domain-specific Distribution and Classifier for Cross-domain Classification from Multiple Sources (AAAI2019)
  • Application
    • Cross-domain Fraud Detection: Modeling Users’ Behavior Sequences with Hierarchical Explainable Network for Cross-domain Fraud Detection (WWW2020)
    • Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising (KDD2021)
  • Survey

Results on Office31(UDA)

Method A - W D - W W - D A - D D - A W - A Average
ResNet 68.4±0.5 96.7±0.5 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DDC 75.8±0.2 95.0±0.2 98.2±0.1 77.5±0.3 67.4±0.4 64.0±0.5 79.7
DDC* 78.3±0.4 97.1±0.1 100.0±0.0 81.7±0.9 65.2±0.6 65.1±0.4 81.2
DAN 83.8±0.4 96.8±0.2 99.5±0.1 78.4±0.2 66.7±0.3 62.7±0.2 81.3
DAN* 82.6±0.7 97.7±0.1 100.0±0.0 83.1±0.9 66.8±0.3 66.6±0.4 82.8
DCORAL* 79.0±0.5 98.0±0.2 100.0±0.0 82.7±0.1 65.3±0.3 64.5±0.3 81.6
Revgrad 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
Revgrad* 82.6±0.9 97.8±0.2 100.0±0.0 83.3±0.9 66.8±0.1 66.1±0.5 82.8
MRAN 91.4±0.1 96.9±0.3 99.8±0.2 86.4±0.6 68.3±0.5 70.9±0.6 85.6
DSAN 93.6±0.2 98.4±0.1 100.0±0.0 90.2±0.7 73.5±0.5 74.8±0.4 88.4

Note that the results without '*' comes from paper. The results with '*' are run by myself with the code.

Results on Office31(MUDA)

Standards Method A,W - D A,D - W D,W - A Average
ResNet 99.3 96.7 62.5 86.2
DAN 99.5 96.8 66.7 87.7
Single Best DCORAL 99.7 98.0 65.3 87.7
RevGrad 99.1 96.9 68.2 88.1
DAN 99.6 97.8 67.6 88.3
Source Combine DCORAL 99.3 98.0 67.1 88.1
RevGrad 99.7 98.1 67.6 88.5
Multi-Source MFSAN 99.5 98.5 72.7 90.2

Results on OfficeHome(MUDA)

Standards Method C,P,R - A A,P,R - C A,C,R - P A,C,P - R Average
ResNet 65.3 49.6 79.7 75.4 67.5
DAN 64.1 50.8 78.2 75.0 67.0
Single Best DCORAL 68.2 56.5 80.3 75.9 70.2
RevGrad 67.9 55.9 80.4 75.8 70.0
DAN 68.5 59.4 79.0 82.5 72.4
Source Combine DCORAL 68.1 58.6 79.5 82.7 72.2
RevGrad 68.4 59.1 79.5 82.7 72.4
Multi-Source MFSAN 72.1 62.0 80.3 81.8 74.1

Note that (1) Source combine: all source domains are combined together into a traditional single-source v.s. target setting. (2) Single best: among the multiple source domains, we report the best single source transfer results. (3) Multi-source: the results of MUDA methods.

Note

If you find that your accuracy is 100%, the problem might be the dataset folder. Please note that the folder structure required for the data provider to work is:

-dataset
    -amazon
    -webcam
    -dslr

Contact

If you have any problem about this library, please create an Issue or send us an Email at:

Reference

If you use this repository, please cite the following papers:

@inproceedings{zhu2019aligning,
  title={Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources},
  author={Zhu, Yongchun and Zhuang, Fuzhen and Wang, Deqing},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={33},
  pages={5989--5996},
  year={2019}
}
@article{zhu2020deep,
  title={Deep Subdomain Adaptation Network for Image Classification},
  author={Zhu, Yongchun and Zhuang, Fuzhen and Wang, Jindong and Ke, Guolin and Chen, Jingwu and Bian, Jiang and Xiong, Hui and He, Qing},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2020},
  publisher={IEEE}
}
Owner
Yongchun Zhu
ICT Yongchun Zhu
Yongchun Zhu
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022