Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Related tags

Deep LearningLineHTR
Overview

Line-level Handwritten Text Recognition with TensorFlow

poster

This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and can handle a full line of text image. Huge thanks to @Harald Scheidl for his great works.

How to run

Go to the src/ directory and run python main.py with these following arguments

Command line arguments

  • --train: train the NN, details see below.
  • --validate: validate the NN, details see below.
  • --beamsearch: use vanilla beam search decoding (better, but slower) instead of best path decoding.
  • --wordbeamsearch: use word beam search decoding (only outputs words contained in a dictionary) instead of best path decoding. This is a custom TF operation and must be compiled from source, more information see corresponding section below. It should not be used when training the NN.

I don't include any pretrained model in this branch so you will need to train the model on your data first

Train model

I created this model for the Cinnamon AI Marathon 2018 competition, they released a small dataset but it's in Vietnamese, so you guys may want to try some other dataset like [4]IAM for English.

As long as your dataset contain a labels.json file like this:

{
    "img1.jpg": "abc xyz",
    ...
    "imgn.jpg": "def ghi"
}

With eachkey is the path to the images file and each value is the ground truth label for that image, this code will works fine.

Learning is visualized by Tensorboard, I tracked the character error rate, word error rate and sentences accuracy for this model. All logs will be saved in ./logs/ folder. You can start a Tensorboard session to see the logs with this command tensorboard --logdir='./logs/'

It's took me about 48 hours with about 13k images on a single GTX 1060 6GB to get down to 0.16 CER on the private testset of the competition.

Information about model

Overview

The model is a extended version of the Simple HTR system @Harald Scheidl implemented It consists of 7 CNN layers, 2 RNN (Bi-LSTM) layers and the CTC loss and decoding layer and can handle a full line of text image

  • The input image is a gray-value image and has a size of 800x64
  • 7 CNN layers map the input image to a feature sequence of size 100x512
  • 2 LSTM layers with 512 units propagate information through the sequence and map the sequence to a matrix of size 100x205. Each matrix-element represents a score for one of the 205 characters at one of the 100 time-steps
  • The CTC layer either calculates the loss value given the matrix and the ground-truth text (when training), or it decodes the matrix to the final text with best path decoding or beam search decoding (when inferring)
  • Batch size is set to 50

Highest accuracy achieved is 0.84 on the private testset of the Cinnamon AI Marathon 2018 competition (measure by Charater Error Rate - CER).

Improve accuracy

If you need a better accuracy, here are some ideas how to improve it [2]:

  • Data augmentation: increase dataset-size by applying further (random) transformations to the input images. At the moment, only random distortions are performed.
  • Remove cursive writing style in the input images (see DeslantImg).
  • Increase input size.
  • Add more CNN layers or use transfer learning on CNN.
  • Replace Bi-LSTM by 2D-LSTM.
  • Replace optimizer: Adam improves the accuracy, however, the number of training epochs increases (see discussion).
  • Decoder: use token passing or word beam search decoding [3] (see CTCWordBeamSearch) to constrain the output to dictionary words.
  • Text correction: if the recognized word is not contained in a dictionary, search for the most similar one.

Btw, don't hesitate to ask me anything via a Github Issue (See the issue template file for more details)

BTW, big shout out to Sushant Gautam for extended this code for IAM dataset, he even provide pretrained model and web UI for inferences the model. Don't forget to check his repo out.

References

[1] Build a Handwritten Text Recognition System using TensorFlow

[2] Scheidl - Handwritten Text Recognition in Historical Documents

[3] Scheidl - Word Beam Search: A Connectionist Temporal Classification Decoding Algorithm

[4] Marti - The IAM-database: an English sentence database for offline handwriting recognition

Owner
Hoàng Tùng Lâm (Linus)
AI Researcher/Engineer at Techainer
Hoàng Tùng Lâm (Linus)
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022