Versatile Generative Language Model

Overview

Versatile Generative Language Model

License: MIT

This is the implementation of the paper:

Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning. Zhaojiang Lin, Andrea Madotto, Pascale Fung Findings of EMNLP 2020 [PDF]

If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{lin2020exploring,
  title={Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning},
  author={Lin, Zhaojiang and Madotto, Andrea and Fung, Pascale},
  journal={arXiv preprint arXiv:2004.03829},
  year={2020}
}

Abstract

Fine-tuning pre-trained generative language models to down-stream language generation tasks have shown promising results. However, it comes with the cost of having a single, large, model for each task, which is not ideal in low-memory/power scenarios (e.g., mobile). In this work, we propose an effective way for fine-tuning multiple down-stream generation tasks simultaneously using a single, large pre-trained model. The experiments in five diverse language generation tasks show that by just using an additional 2-3% parameters for each task, our model can maintain or even improve the performance of fine-tuning the whole model.

Versatile Generative Language Model (VLM):

Versatile Language Model (VLM) is composed of three components: a pre-trained language model back-bone (e.g., GPT-2), and two kinds of specialized parameters for each generation task such as low-rank residual adapters and task embeddings.

Dependency

Check the packages needed or simply run the command

❱❱❱ pip install -r requirements.txt

Experiments

Dataset

Download the preprocessed datasets

Reproducibility

We provide the trained checkpoint of our VLM.

Test model: choose one task from (mt, summarization, dialogue, qa, nlg].

❱❱❱ python ./evaluate_vlm.py --task mt --no_sample --model_checkpoint $model_path

Fine tune GPT-2

Train machine translation:

❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json

Test machine translation:

❱❱❱ python ./evaluate.py --task mt --no_sample --max_history=2 --model_checkpoint runs/$model_checkpoint

Check run.sh to run other tasks

VLM train Adapters and Task embeddings

Train machine translation without knowledge distillation

❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json --adapter_bottleneck 300 --lr 0.0005

Train machine translation using sentence level knowledge distillation:

❱❱❱ python ./sentence_distiller.py --task mt --max_history=2 --model_checkpoint runs/$fully_finetuned_gpt2_checkpoint --no_sample
❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json --adapter_bottleneck 300 --lr 0.0005 --distillation

Test machine traslation:

❱❱❱ python ./evaluate.py --task mt --no_sample --adapter_bottleneck 300 --model_checkpoint runs/$model_checkpoint

Check run.sh to run other tasks

Combine all the adapters and task embedding into single model

Line 68 of combine_all.py to provide the list of checkpoint

❱❱❱ python combine_all.py

Test to see if the result is same

❱❱❱ python ./evaluate_vlm.py --task mt --no_sample --model_checkpoint $model_path

The above scripts illustrate how to train VLM continuously when tasks arrive sequentially.

Multitask training VLM

When all the tasks available at the same time.

❱❱❱ python ./train_vlm.py --gradient_accumulation_steps=16 --train_batch_size=1 --valid_batch_size=1 --n_epochs 3

Acknowledgement

This repository is implemented base on Huggingface

Owner
Zhaojiang Lin
Ph.D. Candidate - NLP - Deep Learning
Zhaojiang Lin
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022