Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Overview

Range Image-based 3D LiDAR Localization

This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicles.

Developed by Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe and Jens Behley.

It uses a novel sensor model with MCL to achieve 3D LiDAR global localization and pose tracking. The sensor model compares the range image of the current LiDAR scan to the synthetic range images rendered from the triangular mesh to update the weight of particles. This method is simple but can be used with different types of LiDAR scanners in different datasets and environments without fine-tuning.

Online localization demo.

Visualizations: Left: the triangular mesh and the localization results; Right: Sub-tile maps

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. How to use
  5. Related work
  6. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2021icra,
	author = {X. Chen and I. Vizzo and T. L{\"a}be and J. Behley and C. Stachniss},
	title = {{Range Image-based LiDAR Localization for Autonomous Vehicles}},
	booktitle = icra,
	year = 2021,
	url = {http://www.ipb.uni-bonn.de/pdfs/chen2021icra.pdf},
	codeurl = {https://github.com/PRBonn/range-mcl}
}

Dependencies

The code was tested with Ubuntu 20.04 with its standard python version 3.8.

We are using OpenGL to do achieve fast rendering, so you will need an OpenGL capable graphics card (we use Nvidia cards, e.g. 2080Ti) to be fast.

  • System dependencies related to OpenGL:

    sudo apt-get update 
    sudo apt-get install libgl1-mesa-glx
  • Other system dependencies:

    sudo apt-get update 
    sudo apt-get install libusb-1.0   # open3d 0.12.0 dependency
    sudo apt-get install -y python3-pip
    sudo -H pip3 install --upgrade pip
  • Python dependencies (may also work with different versions than mentioned in the requirements file)

    sudo -H pip3 install -r requirements.txt

How to use

Quick use

For a quick demo, one could download the mesh map and LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

cd src/
python3 main_range_mcl.py

One could then get the online visualization of range-based MCL as shown in the gif.

More detailed usage

Here, we provide more detailed information about our range-image-based LiDAR localization method, including building mesh maps, evaluating the localization results and more pre-built maps of different datasets.

Build mesh map

To build a mesh map, we use the Poisson surface reconstruction provided by the Open3D library. One need to download the LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

python3 build_mesh_map.py

Notice that, we used our moving object segmentation method (coming soon) cleaned the scans before building the map. One could also use other methods to clean the map.

For fast calculating and generating range and normal data for LiDAR scans, one could find more details here.

Evaluation

Once finished the localization process, one would get the localization results at /results. To evaluate the localization results, one could check the evaluation.py. For a quick demo, one just need to run

python3 evaluation.py

Collection of mesh maps

Notice that, the mesh maps were generated using the data from KITTI dataset, MulRan dataset and Apollo dataset. Please register on their official website to apply for the original data.

Related work

Puma: Poisson Surface Reconstruction for LiDAR Odometry and Mapping

We also released the implementation of the algorithms described in our paper Poisson Surface Reconstruction for LiDAR Odometry and Mapping. This is a LiDAR Odometry and Mapping pipeline that uses the Poisson Surface Reconstruction algorithm to build the map as a triangular mesh online.

Overlap-localization: Overlap-based 3D LiDAR Monte Carlo Localization

We previously also proposed a learning-based global localization method, called overlap localization. It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2021, Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Comments
  • some problem

    some problem

    image

    [email protected]:~/range-mcl/src$ python3 main_range_mcl.py INFO - 2021-06-24 00:21:08,437 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-06-24 00:21:08,451 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-06-24 00:21:21,473 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储)

    opened by conancheng 2
  • Regd. CARLA data

    Regd. CARLA data

    Hi,

    Thank you for your work and the open source release. I was wondering if you have released the CARLA sequence (mesh map, odometry etc.) from your experiments somewhere?

    opened by karnikram 0
  • Error with the DISPLAY environment variable

    Error with the DISPLAY environment variable

    Hi there, thanks for providing the code to test. However, I got an issue running the code.

    ==================================================================

    Message=index 0 is out of bounds for axis 0 with size 0 Source=F:\Capstone\algorithms\range_mcl\src\utils.py StackTrace: File "F:\Capstone\algorithms\range_mcl\src\utils.py", line 340, in load_poses_kitti inv_frame0 = np.linalg.inv(poses[0]) File "F:\Capstone\algorithms\range_mcl\src\main_range_mcl.py", line 49, in (Current frame) map_poses = load_poses_kitti(map_pose_file, map_calib_file)

    ======================================================================

    I tried to search for the GLFWError 65544 but none of the solutions seems to work. Is there anything idea what is happening?

    Regards Jimmy

    opened by GinWeng 1
  • 20.04 python3.8 can't be running...

    20.04 python3.8 can't be running...

    [email protected]:~/range-mcl-main/src$ python3 main_range_mcl.py INFO - 2021-08-06 11:42:08,929 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-08-06 11:42:08,931 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-08-06 11:42:12,640 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储) 2021-08-06 14-09-58屏幕截图

    2021-08-06 14-09-33屏幕截图

    opened by conancheng 4
  • How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    The work is excellent and I'm honor to study for it.But I have two questions about it: 1、how the algorithm runs in real time not need "velodyne_bin" 2、its compatibility with solid-state lidar ,such as livox I'm looking forward to your answers,thank you Yours sincerely

    opened by PigletPh 8
  • python main_range_mcl.py problem

    python main_range_mcl.py problem

    OS: ubuntu2004 python: Python 3.8.5 gpu: GeForce GTX 1060 drive NVIDIA-SMI 460.56 Driver Version: 460.56 CUDA Version: 11.2

    $ python main_range_mcl.py ... finished frame 1099 with time of: 7.22408e-05 s finished frame 1100 with time of: 5.55515e-05 s Average runtime after convergence: 0.16806003594713895 save the localization results at: ../results/demo_loc_results.npz Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTextureBuffer.del at 0x7efcd4e45ca0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 128, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlFramebuffer.del at 0x7efcd4e4e9d0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 624, in del AttributeError: 'NoneType' object has no attribute 'glDeleteFramebuffers' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlRenderbuffer.del at 0x7efcd4e4e5e0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 591, in del AttributeError: 'NoneType' object has no attribute 'glDeleteRenderbuffers'

    opened by improve100 3
Releases(v1.0)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023