Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

Overview

structshot

Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arzoo Katiyar, in EMNLP 2020.

Data

Due to license reason, we are only able to release the full CoNLL 2003 and WNUT 2017 dataset. We also release the support sets that we sampled from the CoNLL/WNUT/I2B2 dev sets to enable the reproducing of our evaluation results.

CoNLL 2003

The CoNLL 2003 NER train/dev/test datasets are data/train.txt, data/dev.txt, and data/test.txt respectively. The labels are available in data/labels.txt.

WNUT 2017

The WNUT 2017 NER dev/test datasets are data/dev-wnut.txt and data/test-wnut.txt respectively. The labels are available in data/labels-wnut.txt.

Support sets for CoNLL 2003, WNUT 2017, and I2B2 2014

The one-shot and five-shot support sets used in the paper are available in data/support-* folders.

Usage

Due to data license limitation, we will show how to do five-shot transfer learning from the CoNLL 2003 dataset to the WNUT 2017 dataset, instead of transfering from the OntoNotes 5 dataset, as presented in our paper.

The first step is to install the package and cd into the structshot directory:

pip install -e .
cd structshot

Pretrain BERT-NER model

The marjority of the code is copied from the HuggingFace transformers repo, which is used to pretrain a BERT-NER model:

# Pretrain a conventional BERT-NER model on CoNLL 2003 
bash run_pl.sh

In our paper, we actually merged B- and I- tags together for pretraining as well.

Few-shot NER with NNShot

Given the pretrained model located at output-model/checkpointepoch=2.ckpt, we now can perform five-shot NER transfer on the WNUT test set:

# Five-shot NER with NNShot
bash run_pred.sh output-model/checkpointepoch=2.ckpt NNShot

We use the IO tagging scheme rather than the BIO tagging scheme due to its simplicity and better performance. I obtained 22.8 F1 score.

Few-shot NER with StructShot

Given the same pretrained model, simply run:

# Five-shot NER with StructShot
bash run_pred.sh output-model/checkpointepoch=2.ckpt StructShot

I obtained 29.5 F1 score. You can tune the parameter tau in the run_pred.sh script based on dev set performance.

Notes

There are a few differences between this implementation and the one reported in the paper due to data license reason etc.:

  • This implementation pretrains the BERT-NER model with the BIO tagging scheme, while in our paper we uses the IO tagging scheme.
  • This implementation performs five-shot transfer learning from CoNLL 2003 to WNUT 2017, while in our paper we perform five-shot transfer learning from OntoNotes 5 to CoNLL'03/WNUT'17/I2B2'14.

If you can access OntoNotes 5 and I2B2'14, reproducing the results of the paper should be trivial.

Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022