Like Dirt-Samples, but cleaned up

Overview

Clean-Samples

Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the metadata for specifics).

The bin/meta.py python script is a reference implementation that can make a '.cleanmeta' metadata file for your own sample pack folder. See below for how to use it and contribute a sample pack of your own.

If you want to use these outside the Tidal/SuperDirt/SuperCollider ecosystem you are very welcome. You're encouraged to join discussion in the github issue tracker so that we can develop a standard way to share and index/signpost these packs.

See /tidalcycles/sounds-repetition for an example sample pack which has two sets of samples in it.

How to contribute a sample pack

Please only contribute samples if you are happy to share them under a permissive license such as CC0 or a similar creative commons license.

If you are unfamiliar with the 'git' software, please create an issue here, with a short description of your samples and a link to them and someone should be along to help shortly.

If you are familiar with git and running python scripts (or happy to learn), please follow the below instructions. This is all new - if anything is unclear please create an issue, thanks!

  1. Get your samples together in .wav format, editing them if necessary (see below for advice).

  2. Create a new repository. This isn't essential, but consider putting 'sounds-' in front of its name, e.g. 'sounds-303bass' for your 303 bass samples.

  3. Add your samples to the repository. For an example of how to organise them, see this sample pack: tidalcycles/sounds-repetition, which has two sets of samples, with a subfolder for each.

  4. Create a '.cleanmeta' metadata file for each subfolder. Again, see tidalcycles/sounds-repetition for examples. There is a python script bin/meta.py which can generate the metadata file for you, run it without parameters for help. Here is an example commandline, that was used to generate repetition.cleanmeta:

    ../Clean-Samples/bin/meta.py --maintainer alex --email [email protected] --copyright "(c) 2021 Alex McLean" --license CC0 --provenance "Various dodgy speech synths" --shortname repetition --sample-subfolder repetition/ --write .
    

    After generating the file, edit it with a text editor to fill in any missing info.

  5. When ready, add te URL of your repository to the https://github.com/tidalcycles/Clean-Samples/blob/main/Clean-Samples.quark for the Clean-Samples quark) in a pull request. You could also add it to the SuperCollider quarks database, or we can do that for you if you prefer, so that we can accept the PR to Clean-Samples once it's accepted as a quark.

Advice for preparing samples

You can use free/open source software like audacity for editing samples.

As a minimum, be sure to trim any silence from beginning/end of the samples, and that the start and end of the sample is at zero to avoid clicks (you might need to fade in / fade out by a tiny amount to achieve this).

Consider adjusting the volume/loudness too, for example normalising to -1.0db - but this is very subjective and will depend on the nature of the samples and the music they're used with. For example distorted gabba samples are intended to be very loud, and a whisper is intended to sound silent. The average non-percussive sample should be around -23dB RMS. Samples shouldn't exceed 0dB true peak. EBU recommends -1dBTP at 4x-oversampling. Samples generally shouldn't have DC offset, although e.g. some kick drum samples naturally have non-zero mean.

For more advice, you could join the discussion here.

Thanks!

Owner
TidalCycles
Live coding environment for making patterns
TidalCycles
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023