Code for "Universal inference meets random projections: a scalable test for log-concavity"

Overview

How to use this repository

This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test for log-concavity" by Robin Dunn, Larry Wasserman, and Aaditya Ramdas.

Folder contents

  • batch_scripts: Contains SLURM batch scripts to run the simulations. Scripts are labeled by the figure for which their simulations produce data. These scripts run the code in sim_code, using the parameters in sim_params.
  • data: Output of simulations.
  • plot_code: Reads simulation outputs from data and reproduces all figures in the paper. Plots are saved to plots folder.
  • plots: Contains all plots in paper.
  • sim_code: R code to run simulations. Simulation output is saved to data folder.
  • sim_params: Parameters for simulations. Each row contains a single choice of parameters. The scripts in sim_code read in these files, and the scripts in batch_scripts loop through all choices of parameters.

How do I ...

Produce the simulations for a given figure?

In the batch_scripts folder, scripts are labeled by the figure for which they simulate data. Run all batch scripts corresponding to the figure of interest. The allocated run time is estimated from the choice of parameters for which the code has the longest run time. Many scripts will run faster than this time. The files in sim_code each contain progress bars to estimate the remaining run time. You may wish to start running these files outside of a batch submission to understand the run time on your computing system.

Alternatively, to run the code without using a job submission system, click on any .sh file. The Rscript lines can be run on a terminal, replacing $SLURM_ARRAY_TASK_ID with all of the indices in the batch array.

The simulation output will be stored in the data folder, with one dataset per choice of parameters. To combine these datasets into a single dataset (as they currently appear in data), run the code in sim_code/combine_datasets.R.

Example: batch_scripts/fig01_fully_NP_randproj.sh

This script reproduces the universal test simulations for Figure 1. To do this, it runs the R script at sim_code/fig01_fully_NP_randproj.R. It reads in the parameters from sim_params/fig01_fully_NP_randproj_params.csv. There are 30 sets of parameters in total. The results will be stored in the data folder, with names such as fig01_fully_NP_randproj_1.csv, ..., fig01_fully_NP_randproj_30.csv. To combine these files into a single .csv file, run the code at sim_code/combine_datasets.R.

Examine the code for a given simulation?

The R code in sim_code is labeled by the figures for which they simulate data. Click on all files corresponding to a given figure.

Reproduce a figure without rerunning the simulations?

The R scripts in plot_code are labeled by their corresponding plots. They read in the necessary simulated data from the data folder and output the figures to the plots folder.

Owner
Robin Dunn
Principal Statistical Consultant, Novartis PhD in Statistics, Carnegie Mellon, 2021
Robin Dunn
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021