Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Overview

Documentation Status

Lbl2Vec

Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embedded label, document and word vectors and returns documents of topics modeled by manually predefined keywords. Once you train the Lbl2Vec model you can:

  • Classify documents as related to one of the predefined topics.
  • Get similarity scores for documents to each predefined topic.
  • Get most similar predefined topic of documents.

See the paper for more details on how it works.

Corresponding Medium post describing the use of Lbl2Vec for unsupervised text classification can be found here.

Benefits

  1. No need to label the whole document dataset for classification.
  2. No stop word lists required.
  3. No need for stemming/lemmatization.
  4. Works on short text.
  5. Creates jointly embedded label, document, and word vectors.

How does it work?

The key idea of the algorithm is that many semantically similar keywords can represent a topic. In the first step, the algorithm creates a joint embedding of document and word vectors. Once documents and words are embedded in a vector space, the goal of the algorithm is to learn label vectors from previously manually defined keywords representing a topic. Finally, the algorithm can predict the affiliation of documents to topics from document vector <-> label vector similarities.

The Algorithm

0. Use the manually defined keywords for each topic of interest.

Domain knowledge is needed to define keywords that describe topics and are semantically similar to each other within the topics.

Basketball Soccer Baseball
NBA FIFA MLB
Basketball Soccer Baseball
LeBron Messi Ruth
... ... ...

1. Create jointly embedded document and word vectors using Doc2Vec.

Documents will be placed close to other similar documents and close to the most distinguishing words.

2. Find document vectors that are similar to the keyword vectors of each topic.

Each color represents a different topic described by the respective keywords.

3. Clean outlier document vectors for each topic.

Red documents are outlier vectors that are removed and do not get used for calculating the label vector.

4. Compute the centroid of the outlier cleaned document vectors as label vector for each topic.

Points represent the label vectors of the respective topics.

5. Compute label vector <-> document vector similarities for each label vector and document vector in the dataset.

Documents are classified as topic with the highest label vector <-> document vector similarity.

Installation

pip install lbl2vec

Usage

For detailed information visit the Lbl2Vec API Guide and the examples.

from lbl2vec import Lbl2Vec

Learn new model from scratch

Learns word vectors, document vectors and label vectors from scratch during Lbl2Vec model training.

# init model
model = Lbl2Vec(keywords_list=descriptive_keywords, tagged_documents=tagged_docs)
# train model
model.fit()

Important parameters:

  • keywords_list: iterable list of lists with descriptive keywords of type str. For each label at least one descriptive keyword has to be added as list of str.
  • tagged_documents: iterable list of gensim.models.doc2vec.TaggedDocument elements. If you wish to train a new Doc2Vec model this parameter can not be None, whereas the doc2vec_model parameter must be None. If you use a pretrained Doc2Vec model this parameter has to be None. Input corpus, can be simply a list of elements, but for larger corpora, consider an iterable that streams the documents directly from disk/network.

Use word and document vectors from pretrained Doc2Vec model

Uses word vectors and document vectors from a pretrained Doc2Vec model to learn label vectors during Lbl2Vec model training.

# init model
model = Lbl2Vec(keywords_list=descriptive_keywords, doc2vec_model=pretrained_d2v_model)
# train model
model.fit()

Important parameters:

  • keywords_list: iterable list of lists with descriptive keywords of type str. For each label at least one descriptive keyword has to be added as list of str.
  • doc2vec_model: pretrained gensim.models.doc2vec.Doc2Vec model. If given a pretrained Doc2Vec model, Lbl2Vec uses the pre-trained Doc2Vec model from this parameter. If this parameter is defined, tagged_documents parameter has to be None. In order to get optimal Lbl2Vec results the given Doc2Vec model should be trained with the parameters "dbow_words=1" and "dm=0".

Predict label similarities for documents used for training

Computes the similarity scores for each document vector stored in the model to each of the label vectors.

# get similarity scores from trained model
model.predict_model_docs()

Important parameters:

  • doc_keys: list of document keys (optional). If None: return the similarity scores for all documents that are used to train the Lbl2Vec model. Else: only return the similarity scores of training documents with the given keys.

Predict label similarities for new documents that are not used for training

Computes the similarity scores for each given and previously unknown document vector to each of the label vectors from the model.

# get similarity scores for each new document from trained model
model.predict_new_docs(tagged_docs=tagged_docs)

Important parameters:

Save model to disk

model.save('model_name')

Load model from disk

model = Lbl2Vec.load('model_name')

Citing Lbl2Vec

When citing Lbl2Vec in academic papers and theses, please use this BibTeX entry:

@conference{webist21,
author={Tim Schopf. and Daniel Braun. and Florian Matthes.},
title={Lbl2Vec: An Embedding-based Approach for Unsupervised Document Retrieval on Predefined Topics},
booktitle={Proceedings of the 17th International Conference on Web Information Systems and Technologies - WEBIST,},
year={2021},
pages={124-132},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010710300003058},
isbn={978-989-758-536-4},
issn={2184-3252},
}
You might also like...
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Comments
  • ValueError: cannot compute similarity with no input

    ValueError: cannot compute similarity with no input

    Hi Team,

    I am getting following error while running model fit:

    2022-04-08 14:19:04,344 - Lbl2Vec - INFO - Train document and word embeddings 2022-04-08 14:19:09,992 - Lbl2Vec - INFO - Train label embeddings

    ValueError Traceback (most recent call last) in

    ~/SageMaker/lbl2vec/lbl2vec.py in fit(self) 248 # get doc keys and similarity scores of documents that are similar to 249 # the description keywords --> 250 self.labels[['doc_keys', 'doc_similarity_scores']] = self.labels['description_keywords'].apply(lambda row: self._get_similar_documents( 251 self.doc2vec_model, row, num_docs=self.num_docs, similarity_threshold=self.similarity_threshold, min_num_docs=self.min_num_docs)) 252

    ~/anaconda3/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in apply(self, func, convert_dtype, args, **kwds) 4211 else: 4212 values = self.astype(object)._values -> 4213 mapped = lib.map_infer(values, f, convert=convert_dtype) 4214 4215 if len(mapped) and isinstance(mapped[0], Series):

    pandas/_libs/lib.pyx in pandas._libs.lib.map_infer()

    ~/SageMaker/lbl2vec/lbl2vec.py in (row) 249 # the description keywords 250 self.labels[['doc_keys', 'doc_similarity_scores']] = self.labels['description_keywords'].apply(lambda row: self._get_similar_documents( --> 251 self.doc2vec_model, row, num_docs=self.num_docs, similarity_threshold=self.similarity_threshold, min_num_docs=self.min_num_docs)) 252 253 # validate that documents to calculate label embeddings from are found

    ~/SageMaker/lbl2vec/lbl2vec.py in _get_similar_documents(self, doc2vec_model, keywords, num_docs, similarity_threshold, min_num_docs) 625 for word in cleaned_keywords_list] 626 similar_docs = doc2vec_model.dv.most_similar( --> 627 positive=keywordword_vectors, topn=num_docs) 628 except KeyError as error: 629 error.args = (

    ~/anaconda3/envs/python3/lib/python3.6/site-packages/gensim/models/keyedvectors.py in most_similar(self, positive, negative, topn, clip_start, clip_end, restrict_vocab, indexer) 775 all_keys.add(self.get_index(key)) 776 if not mean: --> 777 raise ValueError("cannot compute similarity with no input") 778 mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL) 779

    ValueError: cannot compute similarity with no input

    help wanted 
    opened by TechyNilesh 3
  • pip install doesnt work

    pip install doesnt work

    Hello I'm trying to install the package but I get an error.

    pip install lbl2vec

    Collecting lbl2vec ERROR: Could not find a version that satisfies the requirement lbl2vec (from versions: none) ERROR: No matching distribution found for lbl2vec

    I searched a bit on google and couldn't find a solution.

    Python 3.7.4 pip 19.2.3

    help wanted 
    opened by veiro 2
  • Is paragraph classification possible?

    Is paragraph classification possible?

    Hello and thanks for sharing this. A question: can Lbl2Vec perform well when the "documents" are paragraph-sized? For example 3-5 sentences? Would we need to change Doc2Vec that Lbl2Vec currently uses into Sent2Vec or some other equivalent? Your thoughts?

    Thanks!

    opened by stelmath 0
Releases(v1.0.2)
Owner
sebis - TUM - Germany
Official account of sebis chair
sebis - TUM - Germany
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022