UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

Overview

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

This repository contains UA-GEC data and an accompanying Python library.

Data

All corpus data and metadata stay under the ./data. It has two subfolders for train and test splits

Each split (train and test) has further subfolders for different data representations:

./data/{train,test}/annotated stores documents in the annotated format

./data/{train,test}/source and ./data/{train,test}/target store the original and the corrected versions of documents. Text files in these directories are plain text with no annotation markup. These files were produced from the annotated data and are, in some way, redundant. We keep them because this format is convenient in some use cases.

Metadata

./data/metadata.csv stores per-document metadata. It's a CSV file with the following fields:

  • id (str): document identifier.
  • author_id (str): document author identifier.
  • is_native (int): 1 if the author is native-speaker, 0 otherwise
  • region (str): the author's region of birth. A special value "Інше" is used both for authors who were born outside Ukraine and authors who preferred not to specify their region.
  • gender (str): could be "Жіноча" (female), "Чоловіча" (male), or "Інша" (other).
  • occupation (str): one of "Технічна", "Гуманітарна", "Природнича", "Інша"
  • submission_type (str): one of "essay", "translation", or "text_donation"
  • source_language (str): for submissions of the "translation" type, this field indicates the source language of the translated text. Possible values are "de", "en", "fr", "ru", and "pl".
  • annotator_id (int): ID of the annotator who corrected the document.
  • partition (str): one of "test" or "train"
  • is_sensitive (int): 1 if the document contains profanity or offensive language

Annotation format

Annotated files are text files that use the following in-text annotation format: {error=>edit:::error_type=Tag}, where error and edit stand for the text item before and after correction respectively, and Tag denotes an error category (Grammar, Spelling, Punctuation, or Fluency).

Example of an annotated sentence:

    I {likes=>like:::error_type=Grammar} turtles.

An accompanying Python package, ua_gec, provides many tools for working with annotated texts. See its documentation for details.

Train-test split

We expect users of the corpus to train and tune their models on the train split only. Feel free to further split it into train-dev (or use cross-validation).

Please use the test split only for reporting scores of your final model. In particular, never optimize on the test set. Do not tune hyperparameters on it. Do not use it for model selection in any way.

Next section lists the per-split statistics.

Statistics

UA-GEC contains:

Split Documents Sentences Tokens Authors
train 851 18,225 285,247 416
test 160 2,490 43,432 76
TOTAL 1,011 20,715 328,779 492

See stats.txt for detailed statistics generated by the following command (ua-gec must be installed first):

$ make stats

Python library

Alternatively to operating on data files directly, you may use a Python package called ua_gec. This package includes the data and has classes to iterate over documents, read metadata, work with annotations, etc.

Getting started

The package can be easily installed by pip:

    $ pip install ua_gec==1.1

Alternatively, you can install it from the source code:

    $ cd python
    $ python setup.py develop

Iterating through corpus

Once installed, you may get annotated documents from the Python code:

    
    >>> from ua_gec import Corpus
    >>> corpus = Corpus(partition="train")
    >>> for doc in corpus:
    ...     print(doc.source)         # "I likes it."
    ...     print(doc.target)         # "I like it."
    ...     print(doc.annotated)      # <AnnotatedText("I {likes=>like} it.")
    ...     print(doc.meta.region)    # "Київська"

Note that the doc.annotated property is of type AnnotatedText. This class is described in the next section

Working with annotations

ua_gec.AnnotatedText is a class that provides tools for processing annotated texts. It can iterate over annotations, get annotation error type, remove some of the annotations, and more.

While we're working on a detailed documentation, here is an example to get you started. It will remove all Fluency annotations from a text:

    >>> from ua_gec import AnnotatedText
    >>> text = AnnotatedText("I {likes=>like:::error_type=Grammar} it.")
    >>> for ann in text.iter_annotations():
    ...     print(ann.source_text)       # likes
    ...     print(ann.top_suggestion)    # like
    ...     print(ann.meta)              # {'error_type': 'Grammar'}
    ...     if ann.meta["error_type"] == "Fluency":
    ...         text.remove(ann)         # or `text.apply(ann)`

Contributing

  • The data collection is an ongoing activity. You can always contribute your Ukrainian writings or complete one of the writing tasks at https://ua-gec-dataset.grammarly.ai/

  • Code improvements and document are welcomed. Please submit a pull request.

Contacts

Owner
Grammarly
Millions of users rely on Grammarly's AI-powered products to make their messages, documents, and social media posts clear, mistake-free, and impactful.
Grammarly
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022