AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AttentionGAN-v2 for Unpaired Image-to-Image Translation

AttentionGAN-v2 Framework

The proposed generator learns both foreground and background attentions. It uses the foreground attention to select from the generated output for the foreground regions, while uses the background attention to maintain the background information from the input image. Please refer to our papers for more details.

Framework

Comparsion with State-of-the-Art Methods

Selfie To Anime Translation

Result

Horse to Zebra Translation

Result
Result

Zebra to Horse Translation

Result

Apple to Orange Translation

Result

Orange to Apple Translation

Result

Map to Aerial Photo Translation

Result

Aerial Photo to Map Translation

Result

Style Transfer

Result

Visualization of Learned Attention Masks

Selfie to Anime Translation

Result

Horse to Zebra Translation

Attention

Zebra to Horse Translation

Attention

Apple to Orange Translation

Attention

Orange to Apple Translation

Attention

Map to Aerial Photo Translation

Attention

Aerial Photo to Map Translation

Attention

Extended Paper | Conference Paper

AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks.
Hao Tang1, Hong Liu2, Dan Xu3, Philip H.S. Torr3 and Nicu Sebe1.
1University of Trento, Italy, 2Peking University, China, 3University of Oxford, UK.
In TNNLS 2021 & IJCNN 2019 Oral.
The repository offers the official implementation of our paper in PyTorch.

Are you looking for AttentionGAN-v1 for Unpaired Image-to-Image Translation?

Paper | Code

Are you looking for AttentionGAN-v1 for Multi-Domain Image-to-Image Translation?

Paper | Code

Facial Expression-to-Expression Translation

Result Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Facial Attribute Transfer

Attention Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Result Order: The Learned Attention Masks, AttentionGAN, StarGAN

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AttentionGAN
cd AttentionGAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA Tesla V100 with 16G memory.

Dataset Preparation

Download the datasets using the following script. Please cite their paper if you use the data. Try twice if it fails the first time!

sh ./datasets/download_cyclegan_dataset.sh dataset_name

The selfie2anime dataset can be download here.

AttentionGAN Training/Testing

  • Download a dataset using the previous script (e.g., horse2zebra).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./scripts/train_attentiongan.sh
  • To see more intermediate results, check out ./checkpoints/horse2zebra_attentiongan/web/index.html.
  • How to continue train? Append --continue_train --epoch_count xxx on the command line.
  • Test the model:
sh ./scripts/test_attentiongan.sh
  • The test results will be saved to a html file here: ./results/horse2zebra_attentiongan/latest_test/index.html.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., horse2zebra) with the following script:
sh ./scripts/download_attentiongan_model.sh horse2zebra
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest --saveDisk

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory. Note that if you want to save the intermediate results and have enough disk space, remove --saveDisk on the command line.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Image Translation with Geometric Changes Between Source and Target Domains

For instance, if you want to run experiments of Selfie to Anime Translation. Usage: replace attention_gan_model.py and networks with the ones in the AttentionGAN-geo folder.

Test the Pretrained Model

Download data and pretrained model according above instructions.

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Train a New Model

python train.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --pool_size 50 --no_dropout --norm instance --lambda_A 10 --lambda_B 10 --lambda_identity 0.5 --load_size 286 --crop_size 256 --batch_size 4 --niter 100 --niter_decay 100 --gpu_ids 0 --display_id 0 --display_freq 100 --print_freq 100

Test the Trained Model

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Evaluation Code

  • FID: Official Implementation
  • KID or Here: Suggested by UGATIT. Install Steps: conda create -n python36 pyhton=3.6 anaconda and pip install --ignore-installed --upgrade tensorflow==1.13.1. If you encounter the issue AttributeError: module 'scipy.misc' has no attribute 'imread', please do pip install scipy==1.1.0.

Citation

If you use this code for your research, please cite our papers.

@article{tang2021attentiongan,
  title={AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks},
  author={Tang, Hao and Liu, Hong and Xu, Dan and Torr, Philip HS and Sebe, Nicu},
  journal={IEEE Transactions on Neural Networks and Learning Systems (TNNLS)},
  year={2021} 
}

@inproceedings{tang2019attention,
  title={Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Yan, Yan},
  booktitle={International Joint Conference on Neural Networks (IJCNN)},
  year={2019}
}

Acknowledgments

This source code is inspired by CycleGAN, GestureGAN, and SelectionGAN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


Figure out what you like. Try to become the best in the world of it.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaƫl Defferrard We

haguettaz 12 Dec 10, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022