A Python Package For System Identification Using NARMAX Models

Overview

DOI PyPI version License openissues issuesclosed downloads python status discord contributors forks stars

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license.

Note

The update v0.1.7 has been released with major changes and additional features (Fourier basis function, NAR and NFIR models, possibility to select the lag of the residues for Extended Least Squares algorithm and many more).

There are several API modifications and you will need to change your code to have the new (and upcoming) features.

Check the examples of how to use the new version in the documentation page.

For more details, please see the changelog.

Documentation

Examples

SysIdentPy now support NARX Neural Network and General estimators, e.g., sklearn estimators and Catboost.

Exemples

from torch import nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sysidentpy.metrics import mean_squared_error
from sysidentpy.utils.generate_data import get_siso_data


# Generate a dataset of a simulated dynamical system
x_train, x_valid, y_train, y_valid = get_siso_data(n=1000,
                                                   colored_noise=False,
                                                   sigma=0.001,
                                                   train_percentage=80)

Building Polynomial NARX models with FROLS algorithm

from sysidentpy.model_structure_selection import FROLS
from sysidentpy.basis_function import Polynomial
from sysidentpy.utils.display_results import results
from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
from sysidentpy.residues.residues_correlation import compute_residues_autocorrelation
from sysidentpy.residues.residues_correlation import compute_cross_correlation

basis_function=Polynomial(degree=2)
model = PolynomialNarmax(
  order_selection=True,
  n_info_values=10,
  extended_least_squares=False,
  ylag=2, xlag=2,
  info_criteria='aic',
  estimator='least_squares',
  basis_function=basis_function
)
model.fit(X=x_train, y=y_train)
yhat = model.predict(X=x_valid, y=y_valid)
print(rrse)
r = pd.DataFrame(
	results(
		model.final_model, model.theta, model.err,
		model.n_terms, err_precision=8, dtype='sci'
		),
	columns=['Regressors', 'Parameters', 'ERR'])
print(r)
	
Regressors     Parameters        ERR
0        x1(k-2)     0.9000  0.95556574
1         y(k-1)     0.1999  0.04107943
2  x1(k-1)y(k-1)     0.1000  0.00335113

plot_results(y=y_valid, yhat=yhat, n=1000)
ee = compute_residues_autocorrelation(y_valid, yhat)
plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
x1e = compute_cross_correlation(y_valid, yhat, x2_val)
plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")

polynomial

NARX Neural Network

from sysidentpy.neural_network import NARXNN

class NARX(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = nn.Linear(4, 10)
        self.lin2 = nn.Linear(10, 10)
        self.lin3 = nn.Linear(10, 1)
        self.tanh = nn.Tanh()

    def forward(self, xb):
        z = self.lin(xb)
        z = self.tanh(z)
        z = self.lin2(z)
        z = self.tanh(z)
        z = self.lin3(z)
        return z

narx_net = NARXNN(net=NARX(),
                  ylag=2,
                  xlag=2,
                  loss_func='mse_loss',
                  optimizer='Adam',
                  epochs=200,
                  verbose=False,
                  optim_params={'betas': (0.9, 0.999), 'eps': 1e-05} # optional parameters of the optimizer
)

train_dl = narx_net.data_transform(x_train, y_train)
valid_dl = narx_net.data_transform(x_valid, y_valid)
narx_net.fit(train_dl, valid_dl)
yhat = narx_net.predict(x_valid, y_valid)
ee, ex, extras, lam = narx_net.residuals(x_valid, y_valid, yhat)
narx_net.plot_result(y_valid, yhat, ee, ex)

neural

Catboost-narx

from sysidentpy.general_estimators import NARX
from catboost import CatBoostRegressor

catboost_narx = NARX(base_estimator=CatBoostRegressor(iterations=300,
                                                      learning_rate=0.1,
                                                      depth=6),
                     xlag=2,
                     ylag=2,
                     fit_params={'verbose': False}
)

catboost_narx.fit(x_train, y_train)
yhat = catboost_narx.predict(x_valid, y_valid)
ee, ex, extras, lam = catboost_narx.residuals(x_valid, y_valid, yhat)
catboost_narx.plot_result(y_valid, yhat, ee, ex)

catboost

Catboost without NARX configuration

The following is the Catboost performance without the NARX configuration.

def plot_results(yvalid, yhat):
    _, ax = plt.subplots(figsize=(14, 8))
    ax.plot(y_valid[:200], label='Data', marker='o')
    ax.plot(yhat[:200], label='Prediction', marker='*')
    ax.set_xlabel("$n$", fontsize=18)
    ax.set_ylabel("$y[n]$", fontsize=18)
    ax.grid()
    ax.legend(fontsize=18)
    plt.show()

catboost = CatBoostRegressor(iterations=300,
                            learning_rate=0.1,
                            depth=6)
catboost.fit(x_train, y_train, verbose=False)
plot_results(y_valid, catboost.predict(x_valid))

catboost

The examples directory has several Jupyter notebooks presenting basic tutorials of how to use the package and some specific applications of sysidentpy. Try it out!

Requirements

SysIdentPy requires:

  • Python (>= 3.6)
  • NumPy (>= 1.5.0) for all numerical algorithms
  • Matplotlib >= 1.5.2 for static plotting and visualizations
  • Pytorch (>=1.7.1) for building feed-forward neural networks
Platform Status
Linux ok
Windows ok
macOS ok

SysIdentPy do not to support Python 2.7.

A few examples require pandas >= 0.18.0. However, it is not required to use sysidentpy.

Installation

The easiest way to get sysidentpy running is to install it using pip

pip install sysidentpy

We will make it available at conda repository as soon as possible.

Changelog

See the changelog for a history of notable changes to SysIdentPy.

Development

We welcome new contributors of all experience levels. The sysidentpy community goals are to be helpful, welcoming, and effective.

Note: we use the pytest package for testing. The test functions are located in tests subdirectories at each folder inside SysIdentPy, which check the validity of the algorithms.

Run the pytest in the respective folder to perform all the tests of the corresponding sub-packages.

Currently, we have around 81% of code coverage.

You can install pytest using

pip install -U pytest

Example of how to run the tests:

Open a terminal emulator of your choice and go to a subdirectory, e.g,

\sysidentpy\metrics\

Just type pytest and you get a result like

========== test session starts ==========

platform linux -- Python 3.7.6, pytest-5.4.2, py-1.8.1, pluggy-0.13.1

rootdir: ~/sysidentpy

plugins: cov-2.8.1

collected 12 items

tests/test_regression.py ............ [100%]

========== 12 passed in 2.45s ==================

You can also see the code coverage using the pytest-cov package. First, install pytest-cov using

pip install pytest-cov

Run the command below in the SysIdentPy root directory, to generate the report.

pytest --cov=.

Important links

Source code

You can check the latest sources with the command::

git clone https://github.com/wilsonrljr/sysidentpy.git

Project History

The project was started by Wilson R. L. Junior, Luan Pascoal and Samir A. M. Martins as a project for System Identification discipline. Samuel joined early in 2019.

The project is actively maintained by Wilson R. L. Junior and looking for contributors.

Communication

Citation

DOI

If you use SysIdentPy on your project, please drop me a line.

If you use SysIdentPy on your scientific publication, we would appreciate citations to the following paper:

  • Lacerda et al., (2020). SysIdentPy: A Python package for System Identification using NARMAX models. Journal of Open Source Software, 5(54), 2384, https://doi.org/10.21105/joss.02384
@article{Lacerda2020,
  doi = {10.21105/joss.02384},
  url = {https://doi.org/10.21105/joss.02384},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2384},
  author = {Wilson Rocha Lacerda Junior and Luan Pascoal Costa da Andrade and Samuel Carlos Pessoa Oliveira and Samir Angelo Milani Martins},
  title = {SysIdentPy: A Python package for System Identification using NARMAX models},
  journal = {Journal of Open Source Software}
}

Inspiration

The documentation and structure (even this section) is openly inspired by sklearn, einsteinpy, and many others as we used (and keep using) them to learn.

Comments
  • Installation Mac M1 chip

    Installation Mac M1 chip

    Greeting, Thank you for this amazing package. I have a Mac 2022 with M1 chip and I failed to install the SysIdentPy. Do you know how to circumvent the problem? Thanks!

    opened by AntoineDubois 5
  • I am unable to resolve  ModuleNotFoundError: No module named 'sysidentpy.model_structure_selection'

    I am unable to resolve ModuleNotFoundError: No module named 'sysidentpy.model_structure_selection'

    Bug: ModuleNotFoundError: No module named 'sysidentpy.model_structure_selection'

    Steps/code to reproduce: from sysidentpy.model_structure_selection import FROLS

    Environment: Version of the packages you are using Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: sysidentpy in ./.local/lib/python3.6/site-packages (0.1.4.2) Requirement already satisfied: torch>=1.7.1 in ./.local/lib/python3.6/site-packages (from sysidentpy) (1.10.0+cu113) Requirement already satisfied: numpy>=1.17.3 in ./.local/lib/python3.6/site-packages (from sysidentpy) (1.19.5) Requirement already satisfied: matplotlib>=3.1.0 in ./.local/lib/python3.6/site-packages (from sysidentpy) (3.3.4) Requirement already satisfied: python-dateutil>=2.1 in ./.local/lib/python3.6/site-packages (from matplotlib>=3.1.0->sysidentpy) (2.8.1) Requirement already satisfied: kiwisolver>=1.0.1 in ./.local/lib/python3.6/site-packages (from matplotlib>=3.1.0->sysidentpy) (1.3.1) Requirement already satisfied: cycler>=0.10 in ./.local/lib/python3.6/site-packages (from matplotlib>=3.1.0->sysidentpy) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in ./.local/lib/python3.6/site-packages (from matplotlib>=3.1.0->sysidentpy) (2.4.7) Requirement already satisfied: pillow>=6.2.0 in ./.local/lib/python3.6/site-packages (from matplotlib>=3.1.0->sysidentpy) (8.4.0) Requirement already satisfied: dataclasses in ./.local/lib/python3.6/site-packages (from torch>=1.7.1->sysidentpy) (0.8) Requirement already satisfied: typing-extensions in ./.local/lib/python3.6/site-packages (from torch>=1.7.1->sysidentpy) (3.7.4.3) Requirement already satisfied: six in ./.local/lib/python3.6/site-packages (from cycler>=0.10->matplotlib>=3.1.0->sysidentpy) (1.15.0)

    opened by TeaCult 4
  • Cannot install the package

    Cannot install the package

    Hello. I am not able to install the package right now.

    Steps/code to reproduce: On the terminal, I am running

    pip install sysidentpy
    

    and I get

    Collecting sysidentpy
      Using cached https://files.pythonhosted.org/packages/b3/9b/20dde4808c7f81badaecd84f112edd161f989b94f1dc84401acda6c49ae2/sysidentpy-0.1.1.tar.gz
        ERROR: Command errored out with exit status 1:
         command: 'c:\users\neylson - a3data\testepython\novoenv\scripts\python.exe' -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\Neylson - A3Data\\AppData\\Local\\Temp\\pip-install-donew4o8\\sysidentpy\\setup.py'"'"'; __file__='"'"'C:\\Users\\Neylson - A3Data\\AppData\\Local\\Temp\\pip-install-donew4o8\\sysidentpy\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base pip-egg-info
             cwd: C:\Users\Neylson - A3Data\AppData\Local\Temp\pip-install-donew4o8\sysidentpy\
        Complete output (1 lines):
        numpy is required during installation
        ----------------------------------------
    ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
    

    I am using Python 3.8 in a Windows 10 OS.

    opened by neylsoncrepalde 4
  • It fails for

    It fails for "numpy is required during installation" when we trying to install sysidentpy from requirements.txt.

    Describe the bug It fails for "numpy is required during installation" when we trying to install sysidentpy from requirements.txt.

    To Reproduce

    1. Create a requirements.txt with the below 3 packages: numpy matplotlib sysidentpy
    2. run pip install command pip install -r requirements.txt
    3. Issue appears: image

    Expected results The sysidentpy get installed with all its dependencies.

    Actual results sysidentpy failed to install for error message "numpy is required during installation".

    Environment sysidentpy-0.1.5.3

    Additional context Even if we put the numpy before sysidentpy in requirements.txt does not help. I think this issue is because all the packages are only downloaded in the first pass and then installed all together at the end.

    Workaround We currently have a workaround to pip install all the dependency packages separately before we install for the requirements.txt. But this requires us to do these in a Linux VM as our target server is Linux OS while we are developing in Windows. So it would be great if we could have an actual solution for this issue. Thanks in advance!

    opened by Yangsh-w 3
  • Forecasting with unseen inputs and forecast model generation

    Forecasting with unseen inputs and forecast model generation

    The predict function input arguments are X_valid and y_valid. How can I forecast with my trained model if I don't have output (y_valid) yet?

    Using the simulation function, can it be used for forecasting by directly referencing the trained model regressors?

    The package worked perfectly for my data, and I would like to use it for real-time workflow. This involves training validation-forecasting-updating of the model in real-time.

    As new data is streamed, can I initialize with the previous model and re-regress to update the model's parameters? Thank you very much

    opened by rabiu42000 3
  • Problem using MISO

    Problem using MISO

    Applying the example of article "SysIdentPy: A Python package for System Identificationusing NARMAX models" gives an error. Typing : model = PolynomialNarmax(non_degree=2,order_selection=True,ylag=2, xlag=[[1, 2], [1, 2]],info_criteria='aic', estimator='least_squares',) Gives : -

    TypeError Traceback (most recent call last)

    in () ----> 1 model = PolynomialNarmax(non_degree=2,order_selection=True,ylag=2, xlag=[[1, 2], [1, 2]],info_criteria='aic', estimator='least_squares',)

    2 frames

    /content/gdrive/My Drive/python/03_WP/sysidentpy/base.py in (.0) 116 # create only the lags passed from list 117 x_vec_tmp = [] --> 118 x_vec_tmp.extend([lag + 1000*np.ones(np.size(lag)) for lag in xlag]) 119 x_vec_tmp = np.array(x_vec_tmp) 120 elif isinstance(xlag, int) and n_inputs == 1:

    TypeError: can only concatenate list (not "int") to list

    opened by micheloz 3
  • Example does not run

    Example does not run

    O exemplo extended_least_squares.ipynb falha com esse erro:

    0.5839138626779056
          Regressors Parameters         ERR
    0        x1(k-2)     0.8886  0.74898574
    1         y(k-1)     0.2710  0.06875041
    2  x1(k-1)y(k-1)     0.0924  0.00403020
    3         y(k-2)    -0.0411  0.00143946
    4      x1(k-1)^2    -0.0575  0.00103367
    5   y(k-2)y(k-1)     0.0619  0.00133295
    6  x1(k-1)y(k-2)     0.0477  0.00065670
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    ~/Downloads/sysidentpy/examples/extended_least_squares.ipynb in <module>
         10
         11     model.fit(x_train, y_train)
    ---> 12     parameters[:, i] = list(model.theta)
         13
         14 sns.set()
    
    ValueError: cannot copy sequence with size 7 to array axis with dimension 3
    

    Todos os outros funcionam. Acho que podem adicionar "macOS OK" na lista.

    opened by acristoffers 2
  • Neural NARX - Predicting without labels (forecasting)

    Neural NARX - Predicting without labels (forecasting)

    Is your feature request related to a problem? Please describe. Enhancement of the predict method for Neural NARX in order to access forecasting scenarios where you don't have the labels (y).

    Describe the solution you'd like Be able to use only the 'X_test' as input for the 'predict' method, adding a parameter like 'forecast_horizon' to express the number of steps to predict WITHOUT the actual labels. This is the scenario of a forecasting prediction.

    opened by marcostx 1
  • Exception: Insufficient initial conditions elements!

    Exception: Insufficient initial conditions elements!

    I get this exception when i use model.fit(x_train, y_train, x_valid, y_valid) for MetaMSS same with FROLS. What causes this kind of exception? \sysidentpy\polynomial_basis\narmax.py", line 559, in _model_prediction raise Exception("Insufficient initial conditions elements!")

    opened by rabiu42000 1
  • Too much black text

    Too much black text

    There's too much black (bold) text on

    https://wilsonrljr.github.io/sysidentpy/user_guide.html

    Presumably a problem with the Markdown where a **...** wasn't closed.

    opened by dpsanders 1
  • V0.2.1

    V0.2.1

    v0.2.1

    CONTRIBUTORS

    • wilsonrljr

    CHANGES

    • The update v0.2.1 has been released with additional feature, minor API changes and fixes.

    • MAJOR: Neural NARX now support CUDA

      • Now the user can build Neural NARX models with CUDA support. Just add device='cuda' to use the GPU benefits.
      • Updated docs to show how to use the new feature.
    • MAJOR: New documentation website

      • The documentation is now entirely based on Markdown (no rst anymore).
      • We use MkDocs and Material for MkDocs theme now.
      • Dark theme option.
      • The Contribute page have more details to help those who wants to contribute with SysIdentPy.
      • New sections (e.g., Blog, Sponsors, etc.)
      • Many improvements under the hood.
    • MAJOR: Github Sponsor

      • Now you can support SysIdentPy by becoming a Sponsor! Details: https://github.com/sponsors/wilsonrljr
    • Tests:

      • Now there are test for almost every function.
      • Neural NARX tests are raising numpy issues. It'll be fixed til next update.
    • FIX: NFIR models in General Estimators

      • Fix support for NFIR models using sklearn estimators.
    • The setup is now handled by the pyproject.toml file.

    • Remove unused code.

    • Fix docstring variables.

    • Fix code format issues.

    • Fix minor grammatical and spelling mistakes.

    • Fix issues related to html on Jupyter notebooks examples on documentation.

    • Updated Readme.

    opened by wilsonrljr 0
  • steps_ahead not simulating next steps in SimulateNARMAX

    steps_ahead not simulating next steps in SimulateNARMAX

    https://github.com/wilsonrljr/sysidentpy/blob/440bd926892b506506eaa37d3864cfed99e6a2b1/sysidentpy/simulation/_simulation.py#L333

    bug When trying to simulate duffing equation

    x_1 = 1.0 x_2
    x_2 = -0.15 x_1 + 2.75 x_2 - 1.0 x_2^3
    

    by giving steps_ahead = 2 or more, it is still predicting the one step forward for all the given test values. And it cannot simulate with out the steps_ahead parameter and also when steps_ahead = 50 or more. Please see the respective screenshots of the simulations.

    ident_model = np.array([
          [1001, 1001, 1001],
          [1001,    0,    0],
          [2001,    0,    0],
           ])
    
    
    s = SimulateNARMAX(basis_function=Polynomial(degree=3), calculate_err=True, estimate_parameter=True, extended_least_squares=True)
    yhat_simulate = s.simulate(
        X_train=x_train,
        y_train=y_train,
        X_test=x_test,
        y_test=y_test,
        model_code=ident_model,
        steps_ahead=2)
    

    without steps_ahead wostepahead steps_ahead = 1 wstepahead1 steps_ahead = 2 wstepahead2nmor steps_ahead = 50 wstepahead50 steps_ahead = 100 wstepahead100

    Thank you very much for this very insightful and helpful project.

    opened by Lalith-Sagar-Devagudi 1
  • Fix Typo in code example

    Fix Typo in code example

    Example code in Basic Usage/Build a Polynomial NARX model has a typo in compute_cross_correlation that gives an error when executed since variable used does not exist

    opened by Gabo-Tor 0
  • The maximum lag of the fitted model is the maximum lag between ylag and xlag

    The maximum lag of the fitted model is the maximum lag between ylag and xlag

    The maximum lag of the fitted model should be updated based on the final_model code. If the user saves the model and just want to predict, the initial conditions must have max(xlag, ylag) even if the final model have a lower final lag.

    Ex.:

    
    model = PolynomialNarmax(
            ylag=10,
            xlag=10
    )
    
    fitted_model = [
        [1001,    0], # y(k-1)
        [2001, 1001], # x1(k-1)y(k-1)
        [2002,    0], # x1(k-2)
        ]
    
    

    The maximum lag in the version v0.1.6 will be 10. However, setting the maximum lag equal 2 is more intuitive because the user do not have to worry about it.

    opened by wilsonrljr 0
  • Support for training from multiple datasets

    Support for training from multiple datasets

    as far as I can tell, the model.fit(X,y) function can only support a single training dataset. I would like to train a model based on multiple recorded datasets (say, 5 recordings, each 10 minutes long, but not captured consecutively, so concatenation is not correct). is this possible? is this planned for a future release? see for example: https://www.mathworks.com/help/ident/ug/dealing-with-multi-experiment-data-and-merging-models.html

    Enhancement 
    opened by jtylka 2
  • spatio-temporal identification

    spatio-temporal identification

    Is your feature request related to a problem? Please describe. identification of PDEs

    Describe the solution you'd like spatio-temporal model creation and parameter estimation based only on data

    Describe alternatives you've considered the ERR can be used for the purpose too

    Additional context any plans on developing this feature? :)

    Enhancement 
    opened by helonayala 1
Releases(v0.2.1)
  • v0.2.1(Aug 30, 2022)

    We're happy to announce the v0.2.1 release with new methods and bug fixes:

    You can see the changelog here: http://sysidentpy.org/changelog/changelog/

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade
    
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 18, 2022)

    We're happy to announce the v0.2.0 release with new methods and bug fixes:

    You can see the changelog here: http://sysidentpy.org/changelog/v0.2.0.html

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.9(Mar 5, 2022)

    We're happy to announce the 0.1.9 release with new methods and bugfixes:

    You can see the changelog here: http://sysidentpy.org/changelog/v0.1.9.html

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.7(Oct 18, 2021)

    We're happy to announce the 0.1.7 release with new methods and bugfixes:

    You can see the changelog here: http://sysidentpy.org/changelog/v0.1.7.html

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.6(Sep 25, 2021)

    We're happy to announce the v0.1.6 release with new methods and bugfixes:

    You can see the changelog here: http://sysidentpy.org/changelog/v0.1.6.html

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Mar 14, 2021)

    We're happy to announce the 0.1.5 release with bugfixes and new code optimizations:

    You can see the changelog here: http://sysidentpy.org/changelog/v0.1.5.html

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade

    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Dec 6, 2020)

    We're happy to announce the 0.1.3 release with bugfixes and new code optimizations:

    You can see the changelog here: http://sysidentpy.org/changelog/v0.1.3.html

    You can upgrade with pip as usual:

    pip install sysidentpy --upgrade
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Sep 12, 2020)

Owner
Wilson Rocha
Master in Electrical Engineering. Data Scientist. Professor. Member of Control and Modelling Group (GCOM)
Wilson Rocha
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022