Hierarchical Few-Shot Generative Models

Overview

Hierarchical Few-Shot Generative Models

Giorgio Giannone, Ole Winther

This repo contains code and experiments for the paper Hierarchical Few-Shot Generative Models.


Settings

Clone the repo:

git clone https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
cd hierarchical-few-shot-generative-models

Create and activate the conda env:

conda env create -f environment.yml
conda activate hfsgm

The code has been tested on Ubuntu 18.04, Python 3.6 and CUDA 11.3

We use wandb for visualization. The first time you run the code you will need to login.

Data

We provide preprocessed Omniglot dataset.

From the main folder, copy the data in data/omniglot_ns/:

wget https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models/releases/download/Omniglot/omni_train_val_test.pkl

For CelebA you need to download the dataset from here.

Dataset

In dataset we provide utilities to process and augment datasets in the few-shot setting. Each dataset is a large collection of small sets. Sets can be created dynamically. The dataset/base.py file collects basic info about the datasets. For binary datasets (omniglot_ns.py) we augment using flipping and rotations. For RGB datasets (celeba.py) we use only flipping.

Experiment

In experiment we implement scripts for model evaluation, experiments and visualizations.

  • attention.py - visualize attention weights and heads for models with learnable aggregations (LAG).
  • cardinality.py - compute ELBOs for different input set size: [1, 2, 5, 10, 20].
  • classifier_mnist.py - few-shot classifiers on MNIST.
  • kl_layer.py - compute KL over z and c for each layer in latent space.
  • marginal.py - compute approximate log-marginal likelihood with 1K importance samples.
  • refine_vis.py - visualize refined samples.
  • sampling_rgb.py - reconstruction, conditional, refined, unconditional sampling for RGB datasets.
  • sampling_transfer.py - reconstruction, conditional, refined, unconditional sampling on transfer datasets.
  • sampling.py - reconstruction, conditional, refined, unconditional sampling for binary datasets.
  • transfer.py - compute ELBOs on MNIST, DoubleMNIST, TripleMNIST.

Model

In model we implement baselines and model variants.

  • base.py - base class for all the models.
  • vae.py - Variational Autoencoder (VAE).
  • ns.py - Neural Statistician (NS).
  • tns.py - NS with learnable aggregation (NS-LAG).
  • cns.py - NS with convolutional latent space (CNS).
  • ctns.py - CNS with learnable aggregation (CNS-LAG).
  • hfsgm.py - Hierarchical Few-Shot Generative Model (HFSGM).
  • thfsgm.py - HFSGM with learnable aggregation (HFSGM-LAG).
  • chfsgm.py - HFSGM with convolutional latent space (CHFSGM).
  • cthfsgm.py - CHFSGM with learnable aggregation (CHFSGM-LAG).

Script

Scripts used for training the models in the paper.

To run a CNS on Omniglot:

sh script/main_cns.sh GPU_NUMBER omniglot_ns

Train a model

To train a generic model run:

python main.py --name {VAE, NS, CNS, CTNS, CHFSGM, CTHFSGM} \
               --model {vae, ns, cns, ctns, chfsgm, cthfsgm} \
               --augment \
               --dataset omniglot_ns \
               --likelihood binary \
               --hidden-dim 128 \
               --c-dim 32 \
               --z-dim 32 \
               --output-dir /output \
               --alpha-step 0.98 \
               --alpha 2 \
               --adjust-lr \
               --scheduler plateau \
               --sample-size {2, 5, 10} \
               --sample-size-test {2, 5, 10} \
               --num-classes 1 \
               --learning-rate 1e-4 \
               --epochs 400 \
               --batch-size 100 \
               --tag (optional string)

If you do not want to save logs, use the flag --dry_run. This flag will call utils/trainer_dry.py instead of trainer.py.


Acknowledgments

A lot of code and ideas borrowed from:

You might also like...
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

The implementation of PEMP in paper
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Releases(Omniglot)
Owner
Giorgio Giannone
Science is built up with data, as a house is with stones. But a collection of data is no more a science than a heap of stones is a house. (J.H. Poincaré)
Giorgio Giannone
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022