Few-Shot Graph Learning for Molecular Property Prediction

Overview

Few-shot Graph Learning for Molecular Property Prediction

Introduction

This is the source code and dataset for the following paper:

Few-shot Graph Learning for Molecular Property Prediction. In WWW 2021.

Contact Zhichun Guo ([email protected]), if you have any questions.

Datasets

The datasets uploaded can be downloaded to train our model directly.

The original datasets are downloaded from Data. We utilize Original_datasets/splitdata.py to split the datasets according to the molecular properties and save them in different files in the Original_datasets/[DatasetName]/new. Then run main.py, the datasets will be automatically preprocessed by loader.py and the preprocessed results will be saved in the Original_datasets/[DatasetName]/new/[PropertyNumber]/propcessed.

Usage

Installation

We used the following Python packages for the development by python 3.6.

- torch = 1.4.0
- torch-geometric = 1.6.1
- torch-scatter = 2.0.4
- torch-sparse = 0.6.1
- scikit-learn = 0.23.2
- tqdm = 4.50.0
- rdkit

Run code

Datasets and k (for k-shot) can be changed in the last line of main.py.

python main.py

Performance

The performance of meta-learning is not stable for some properties. We report two times results and the number of the iteration where we obtain the best results here for your reference.

Dataset k Iteration Property Results k Iteration Property Results
Sider 1 307/599 Si-T1 75.08/75.74 5 561/585 Si-T1 76.16/76.47
Si-T2 69.44/69.34 Si-T2 68.90/69.77
Si-T3 69.90/71.39 Si-T3 72.23/72.35
Si-T4 71.78/73.60 Si-T4 74.40/74.51
Si-T5 79.40/80.50 Si-T5 81.71/81.87
Si-T6 71.59/72.35 Si-T6 74.90/73.34
Ave. 72.87/73.82 Ave. 74.74/74.70
Tox21 1 1271/1415 SR-HS 73.72/73.90 5 1061/882 SR-HS 74.85/74.74
SR-MMP 78.56/79.62 SR-MMP 80.25/80.27
SR-p53 77.50/77.91 SR-p53 78.86/79.14
Ave. 76.59/77.14 Ave. 77.99/78.05

Acknowledgements

The code is implemented based on Strategies for Pre-training Graph Neural Networks.

Reference

@article{guo2021few,
  title={Few-Shot Graph Learning for Molecular Property Prediction},
  author={Guo, Zhichun and Zhang, Chuxu and Yu, Wenhao and Herr, John and Wiest, Olaf and Jiang, Meng and Chawla, Nitesh V},
  journal={arXiv preprint arXiv:2102.07916},
  year={2021}
}
Owner
Zhichun Guo
Zhichun Guo is a Ph.D. student at University of Notre Dame.
Zhichun Guo
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022