Exploit ILP to learn symmetry breaking constraints of ASP programs.

Overview

ILP Symmetry Breaking

Overview

This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs.

Given an ASP file, we use the system SBASS (symmetry-breaking answer set solving) to infer its graph representation and then detect the symmetries as a graph automorphism problem (performed by the system SAUCY). SBASS returns a set of (irredundant) graph symmetry generators, which are used in our framework to compute the positive and negative examples for the ILP system ILASP.

Note: the files of Active Background Knowledge (active_BK/active_BK_sat) contain the constraints learned for the experiments. To test the framework, remove the constraints and follow the files' instructions to obtain the same result.

Project Structure

.
├── \Experiments              # Directory with experiments results 
│   ├── experiments.csv         # CSV file with results
│   └── experiments             # Script to compare the running-time performance     
│
├── \Instances              # Directory with problem instances
│   ├── \House_Configuration     # House-Configuration Problem     
│   ├── \Pigeon_Owner            # Pigeon-Hole Problem with colors and owners extension   
│   ├── \Pigeon_Color            # Pigeon-Hole Problem with colors extension
│   └── \Pigeon_Hole             # Pigeon-Hole Problem  
│
├── \src                    # Sources  
│   ├── \ILASP4                  # ILASP4 
│   ├── \SBASS                   # SBASS 
│   ├── file_names.py            # Python module with file names
│   ├── parser.py                # Main python file: create the positive and negative examples from SBASS output
│   ├── remove.py                # Auxiliary python file to remove duplicate in smodels file
│   └── permutations.lp          # ASP file which computes the (partial) non symmetric 
│                                  permutations of atoms
│
├── .gitignore 
├── .gitattributes
├── ILP_SBC                 # Script that runs SBASS and lift the SBC found using ILASP
└── README.md

Prerequisites

Usage

1) Create default positive examples

Create the default positive examples for Pigeon_Hole problem: each instance in the directory Gen generate a positive example.

$ .\ILP_SBC -g .\Instances\Pigeon_Hole

2) Create positive and negative examples

Default mode: each non-symmetric answer set defines a positive example

 $ .\ILP_SBC -d .\Instances\Pigeon_Hole

Satisfiable mode: define a single positive example with empty inclusions and exclusions

 $ .\ILP_SBC -s .\Instances\Pigeon_Hole

3) Run ILASP to extend the active background knowledge

 $ .\ILP_SBC -i .\Instances\Pigeon_Hole

Citations

C. Drescher, O. Tifrea, and T. Walsh, “Symmetry-breaking answer set solving” (SBASS)

@article{drescherSymmetrybreakingAnswerSet2011,
	title = {Symmetry-breaking answer set solving},
	volume = {24},
	doi = {10.3233/AIC-2011-0495},
	number = {2},
	journal = {AI Commun.},
	author = {Drescher, Christian and Tifrea, Oana and Walsh, Toby},
	year = {2011},
	pages = {177--194}
}

M. Law, A. Russo, and K. Broda, “The {ILASP} System for Inductive Learning of Answer Set Programs” (ILASP)

@article{larubr20b,
     title = {The {ILASP} System for Inductive Learning of Answer Set Programs},
     author = {M. Law and A. Russo  and K. Broda},
     journal = {The Association for Logic Programming Newsletter},
     year = {2020}
}
@misc{ilasp,
     author = {M. Law and A. Russo  and K. Broda},
     title = {Ilasp Releases},
     howpublished = {\url{www.ilasp.com}},
     note = {Accessed: 2020-10-01},
     year={2020}
}
Owner
Research Group Production Systems
Research Group Production Systems
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022