Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Overview

Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Mohamad Shahbazi, Martin Danelljan, Danda P. Paudel, Luc Van Gool
Paper: https://openreview.net/forum?id=7TZeCsNOUB_

Teaser image

Abstract

Class-conditioning offers a direct means of controlling a Generative Adversarial Network (GAN) based on a discrete input variable. While necessary in many applications, the additional information provided by the class labels could even be expected to benefit the training of the GAN itself. Contrary to this belief, we observe that class-conditioning causes mode collapse in limited data settings, where unconditional learning leads to satisfactory generative ability. Motivated by this observation, we propose a training strategy for conditional GANs (cGANs) that effectively prevents the observed mode-collapse by leveraging unconditional learning. Our training strategy starts with an unconditional GAN and gradually injects conditional information into the generator and the objective function. The proposed method for training cGANs with limited data results not only in stable training but also in generating high-quality images, thanks to the early-stage exploitation of the shared information across classes. We analyze the aforementioned mode collapse problem in comprehensive experiments on four datasets. Our approach demonstrates outstanding results compared with state-of-the-art methods and established baselines.

Overview

  1. Requirements
  2. Getting Started
  3. Dataset Prepration
  4. Training
  5. Evaluation and Logging
  6. Contact
  7. How to Cite

Requirements

  • Linux and Windows are supported, but Linux is recommended for performance and compatibility reasons.
  • For the batch size of 64, we have used 4 NVIDIA GeForce RTX 2080 Ti GPUs (each having 11 GiB of memory).
  • 64-bit Python 3.7 and PyTorch 1.7.1. See https://pytorch.org/ for PyTorch installation instructions.
  • CUDA toolkit 11.0 or later. Use at least version 11.1 if running on RTX 3090. (Why is a separate CUDA toolkit installation required? See comments of this Github issue.)
  • Python libraries: pip install wandb click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3.
  • This project uses Weights and Biases for visualization and logging. In addition to installing W&B (included in the command above), you need to create a free account on W&B website. Then, you must login to your account in the command line using the command ‍‍‍wandb login (The login information will be asked after running the command).
  • Docker users: use the provided Dockerfile by StyleGAN2+ADA (./Dockerfile) to build an image with the required library dependencies.

The code relies heavily on custom PyTorch extensions that are compiled on the fly using NVCC. On Windows, the compilation requires Microsoft Visual Studio. We recommend installing Visual Studio Community Edition and adding it into PATH using "C:\Program Files (x86)\Microsoft Visual Studio\ \Community\VC\Auxiliary\Build\vcvars64.bat" .

Getting Started

The code for this project is based on the Pytorch implementation of StyleGAN2+ADA. Please first read the instructions provided for StyleGAN2+ADA. Here, we mainly provide the additional details required to use our method.

For a quick start, we have provided example scripts in ./scripts, as well as an example dataset (a tar file containing a subset of ImageNet Carnivores dataset used in the paper) in ./datasets. Note that the scripts do not include the command for activating python environments. Moreover, the paths for the dataset and output directories can be modified in the scripts based on your own setup.

The following command runs a script that extracts the tar file and creates a ZIP file in the same directory.

bash scripts/prepare_dataset_ImageNetCarnivores_20_100.sh

The ZIP file is later used for training and evaluation. For more details on how to use your custom datasets, see Dataset Prepration.

Following command runs a script that trains the model using our method with default hyper-parameters:

bash scripts/train_ImageNetCarnivores_20_100.sh

For more details on how to use your custom datasets, see Training

To calculate the evaluation metrics on a pretrained model, use the following command:

bash scripts/inference_metrics_ImageNetCarnivores_20_100.sh

Outputs from the training and inferenve commands are by default placed under out/, controlled by --outdir. Downloaded network pickles are cached under $HOME/.cache/dnnlib, which can be overridden by setting the DNNLIB_CACHE_DIR environment variable. The default PyTorch extension build directory is $HOME/.cache/torch_extensions, which can be overridden by setting TORCH_EXTENSIONS_DIR.

Dataset Prepration

Datasets are stored as uncompressed ZIP archives containing uncompressed PNG files and a metadata file dataset.json for labels.

Custom datasets can be created from a folder containing images (each sub-directory containing images of one class in case of multi-class datasets) using dataset_tool.py; Here is an example of how to convert the dataset folder to the desired ZIP file:

python dataset_tool.py --source=datasets/ImageNet_Carnivores_20_100 --dest=datasets/ImageNet_Carnivores_20_100.zip --transform=center-crop --width=128 --height=128

The above example reads the images from the image folder provided by --src, resizes the images to the sizes provided by --width and --height, and applys the transform center-crop to them. The resulting images along with the metadata (label information) are stored as a ZIP file determined by --dest. see python dataset_tool.py --help for more information. See StyleGAN2+ADA instructions for more details on specific datasets or Legacy TFRecords datasets .

The created ZIP file can be passed to the training and evaluation code using --data argument.

Training

Training new networks can be done using train.py. In order to perform the training using our method, the argument --cond should be set to 1, so that the training is done conditionally. In addition, the start and the end of the transition from unconditional to conditional training should be specified using the arguments t_start_kimg and --t_end_kimg. Here is an example training command:

python train.py --outdir=./out/ \
--data=datasets/ImageNet_Carnivores_20_100.zip \
--cond=1 --t_start_kimg=2000  --t_end_kimg=4000  \
--gpus=4 \
--cfg=auto --mirror=1 \
--metrics=fid50k_full,kid50k_full

See StyleGAN2+ADA instructions for more details on the arguments, configurations amd hyper-parammeters. Please refer to python train.py --help for the full list of arguments.

Note: Our code currently can be used only for unconditional or transitional training. For the original conditional training, you can use the original implementation StyleGAN2+ADA.

Evaluation and Logging

By default, train.py automatically computes FID for each network pickle exported during training. More metrics can be added to the argument --metrics (as a comma-seperated list). To monitor the training, you can inspect the log.txt an JSON files (e.g. metric-fid50k_full.jsonl for FID) saved in the ouput directory. Alternatively, you can inspect WandB or Tensorboard logs (By default, WandB creates the logs under the project name "Transitional-cGAN", which can be accessed in your account on the website).

When desired, the automatic computation can be disabled with --metrics=none to speed up the training slightly (3%–9%). Additional metrics can also be computed after the training:

# Previous training run: look up options automatically, save result to JSONL file.
python calc_metrics.py --metrics=pr50k3_full \
    --network=~/training-runs/00000-ffhq10k-res64-auto1/network-snapshot-000000.pkl

# Pre-trained network pickle: specify dataset explicitly, print result to stdout.
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq.zip --mirror=1 \
    --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl

The first example looks up the training configuration and performs the same operation as if --metrics=pr50k3_full had been specified during training. The second example downloads a pre-trained network pickle, in which case the values of --mirror and --data must be specified explicitly.

See StyleGAN2+ADA instructions for more details on the available metrics.

Contact

For any questions, suggestions, or issues with the code, please contact Mohamad Shahbazi at [email protected]

How to Cite

@inproceedings{
shahbazi2022collapse,
title={Collapse by Conditioning: Training Class-conditional {GAN}s with Limited Data},
author={Shahbazi, Mohamad and Danelljan, Martin and Pani Paudel, Danda and Van Gool, Luc},
booktitle={The Tenth International Conference on Learning Representations },
year={2022},
url={https://openreview.net/forum?id=7TZeCsNOUB_}
Owner
Mohamad Shahbazi
Ph.D. student at Computer Vision Lab, ETH Zurich || Interested in Machine Learning and its Applications in Computer Vision, NLP and Healthcare
Mohamad Shahbazi
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022