Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Overview

Learning to Adapt Structured Output Space for Semantic Segmentation

Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge.

Contact: Yi-Hsuan Tsai (wasidennis at gmail dot com) and Wei-Chih Hung (whung8 at ucmerced dot edu)

Paper

Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).

Please cite our paper if you find it useful for your research.

@inproceedings{Tsai_adaptseg_2018,
  author = {Y.-H. Tsai and W.-C. Hung and S. Schulter and K. Sohn and M.-H. Yang and M. Chandraker},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Learning to Adapt Structured Output Space for Semantic Segmentation},
  year = {2018}
}

Example Results

Quantitative Reuslts

Installation

  • Install PyTorch from http://pytorch.org with Python 2 and CUDA 8.0

  • NEW Add the LS-GAN objective to improve the performance

    • Usage: add --gan LS option during training (see below for more details)
  • PyTorch 0.4 with Python 3 and CUDA 8.0

    • Usage: replace the training and evaluation codes with the ones in the pytorch_0.4 folder
    • Update: tensorboard is provided by adding --tensorboard in the command
    • Note: the single-level model works as expected, while the multi-level model requires smaller weights, e.g., --lambda-adv-target1 0.00005 --lambda-adv-target2 0.0005. We will investigate this issue soon.
  • Clone this repo

git clone https://github.com/wasidennis/AdaptSegNet
cd AdaptSegNet

Dataset

  • Download the GTA5 Dataset as the source domain, and put it in the data/GTA5 folder

  • Download the Cityscapes Dataset as the target domain, and put it in the data/Cityscapes folder

Pre-trained Models

  • Please find our-pretrained models using ResNet-101 on three benchmark settings here

  • They include baselines (without adaptation and with feature adaptation) and our models (single-level and multi-level)

Testing

  • NEW Update results using LS-GAN and using Synscapes as the source domain

  • Download the pre-trained multi-level GTA5-to-Cityscapes model and put it in the model folder

  • Test the model and results will be saved in the result folder

python evaluate_cityscapes.py --restore-from ./model/GTA2Cityscapes_multi-ed35151c.pth
python evaluate_cityscapes.py --model DeeplabVGG --restore-from ./model/GTA2Cityscapes_vgg-ac4ac9f6.pth
python compute_iou.py ./data/Cityscapes/data/gtFine/val result/cityscapes

Training Examples

  • NEW Train the GTA5-to-Cityscapes model (single-level with LS-GAN)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single_lsgan \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.01 \
                                     --gan LS
  • Train the GTA5-to-Cityscapes model (multi-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_multi \
                                     --lambda-seg 0.1 \
                                     --lambda-adv-target1 0.0002 --lambda-adv-target2 0.001
  • Train the GTA5-to-Cityscapes model (single-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.001

Related Implementation and Dataset

  • Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker. Domain Adaptation for Structured Output via Discriminative Patch Representations. In ICCV, 2019. (Oral) [paper] [project] [Implementation Guidance]
  • W.-C. Hung, Y.-H Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang. Adversarial Learning for Semi-supervised Semantic Segmentation. In BMVC, 2018. [paper] [code]
  • Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun. No More Discrimination: Cross City Adaptation of Road Scene Segmenters. In ICCV 2017. [paper] [project]

Acknowledgment

This code is heavily borrowed from Pytorch-Deeplab.

Note

The model and code are available for non-commercial research purposes only.

  • 10/2019: update performance and training/evaluation codes for using LS-GAN and Synscapes (especially thanks to Yan-Ting Liu for helping experiments)
  • 01/2019: upate the training code for PyTorch 0.4
  • 07/23/2018: update evaluation code for PyTorch 0.4
  • 06/04/2018: update pretrained VGG-16 model
  • 02/2018: code released
Owner
Yi-Hsuan Tsai
Yi-Hsuan Tsai
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022