Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Overview

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction

This is the code for the paper Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction by Daniel Gehrig*, Michelle Rüegg*, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scaramuzza:

You can find a pdf of the paper here and the project homepage here. If you use this work in an academic context, please cite the following publication:

@Article{RAL21Gehrig,
  author        = {Daniel Gehrig, Michelle Rüegg, Mathias Gehrig, Javier Hidalgo-Carrio and Davide Scaramuzza},
  title         = {Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction},
  journal       = {{IEEE} Robotic and Automation Letters. (RA-L)},
  url           = {http://rpg.ifi.uzh.ch/docs/RAL21_Gehrig.pdf},
  year          = 2021
}

If you use the event-camera plugin go to CARLA, please cite the following publication:

@Article{Hidalgo20threedv,
  author        = {Javier Hidalgo-Carrio, Daniel Gehrig and Davide Scaramuzza},
  title         = {Learning Monocular Dense Depth from Events},
  journal       = {{IEEE} International Conference on 3D Vision.(3DV)},
  url           = {http://rpg.ifi.uzh.ch/docs/3DV20_Hidalgo.pdf},
  year          = 2020
}

Install with Anaconda

The installation requires Anaconda3. You can create a new Anaconda environment with the required dependencies as follows (make sure to adapt the CUDA toolkit version according to your setup):

conda create --name RAMNET python=3.7
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install tb-nightly kornia scikit-learn scikit-image opencv-python

Branches

To run experiments on Event Scape plese switch to the main branch

git checkout main

To run experiments on real data from MVSEC, switch to asynchronous_irregular_real_data.

git checkout asynchronous_irregular_real_data

Checkpoints

The checkpoints for RAM-Net can be found here:

EventScape

This work uses the EventScape dataset which can be downloaded here:

Video to Events

Qualitative results on MVSEC

Here the qualitative results of RAM-Net against state-of-the-art is shown. The video shows MegaDepth, E2Depth and RAM-Net in the upper row, image and event inputs and depth ground truth in the lower row.

Video to Events

Using RAM-Net

A detailed description on how to run the code can be found in the README in the folder /RAM_Net. Another README can be found in /RAM_Net/configs, it describes the meaning of the different parameters in the configs.

Owner
Robotics and Perception Group
Robotics and Perception Group
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022