Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Overview

Multi-Time Attention Networks (mTANs)

This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly Sampled Time Series by Satya Narayan Shukla and Benjamin M. Marlin. This work has been accepted at the International Conference on Learning Representations, 2021.

Requirements

The code requires Python 3.7 or later. The file requirements.txt contains the full list of required Python modules.

pip3 install -r requirements.txt

Training and Evaluation

  1. Interpolation Task on Toy Dataset
python3 tan_interpolation.py --niters 5000 --lr 0.0001 --batch-size 128 --rec-hidden 32 --latent-dim 1 --length 20 --enc mtan_rnn --dec mtan_rnn --n 1000  --gen-hidden 50 --save 1 --k-iwae 5 --std 0.01 --norm --learn-emb --kl --seed 0 --num-ref-points 20 --dataset toy
  1. Interpolation Task on PhysioNet Dataset
python3 tan_interpolation.py --niters 500 --lr 0.001 --batch-size 32 --rec-hidden 64 --latent-dim 16 --quantization 0.016  --enc mtan_rnn --dec mtan_rnn --n 8000  --gen-hidden 50 --save 1 --k-iwae 5 --std 0.01 --norm --learn-emb --kl --seed 0 --num-ref-points 64 --dataset physionet --sample-tp 0.9
  1. Classification Task on PhysioNet Dataset (mTAND-Full)
python3 tan_classification.py --alpha 100 --niters 300 --lr 0.0001 --batch-size 50 --rec-hidden 256 --gen-hidden 50 --latent-dim 20 --enc mtan_rnn --dec mtan_rnn --n 8000 --quantization 0.016 --save 1 --classif --norm --kl --learn-emb --k-iwae 1 --dataset physionet
  1. Classification Task on PhysioNet Dataset (mTAND-Enc)
python3 tanenc_classification.py --niters 200 --lr 0.0001 --batch-size 128 --rec-hidden 128 --enc mtan_enc --n 8000 --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset physionet --seed 0
  1. Classification Task on MIMIC-III Dataset (mTAND-Full)
python3 tan_classification.py --alpha 5 --niters 300 --lr 0.0001 --batch-size 128 --rec-hidden 256 --gen-hidden 50 --latent-dim 128 --enc mtan_rnn --dec mtan_rnn   --save 1 --classif --norm --learn-emb --k-iwae 1 --dataset mimiciii

For MIMIC-III Dataset, first you need to have an access to the dataset which can be requested here. We follow the data extraction process described here: https://github.com/mlds-lab/interp-net.

  1. Classification Task on MIMIC-III Dataset (mTAND-Enc)
python3 tanenc_classification.py --niters 200 --lr 0.0001 --batch-size 256 --rec-hidden 256 --enc mtan_enc  --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset mimiciii --seed 0
  1. Classification Task on Human Activity Dataset (mTAND-Enc)
python3 tanenc_classification.py --niters 1000 --lr 0.001 --batch-size 256 --rec-hidden 512 --enc mtan_enc_activity  --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset activity --seed 0 --classify-pertp

Interpolation Results

Interpolation performance on PhysioNet with varying percent of observed time points:

Classification Results

Classification performance on PhysioNet, MIMIC-III and Human activity dataset, and time per epoch in minutes for all the methods on PhysioNet.

Reference

@inproceedings{
shukla2021multitime,
title={Multi-Time Attention Networks for Irregularly Sampled Time Series},
author={Satya Narayan Shukla and Benjamin Marlin},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=4c0J6lwQ4_}
}
Owner
The Laboratory for Robust and Efficient Machine Learning
The Laboratory for Robust and Efficient Machine Learning
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022