CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

Related tags

Deep LearningDSL
Overview

Python >=3.8 PyTorch >=1.8.0 mmcv-full >=1.3.10

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection

DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detection (SSOD).

This code is established on mmdetection and is only used for research.

Instruction

Install dependencies

pytorch>=1.8.0
cuda 10.2
python>=3.8
mmcv-full 1.3.10

Download ImageNet pre-trained models

Download resnet50_rla_2283.pth (Google) resnet50_rla_2283.pth (Baidu, extract code: 5lf1) for later DSL training.

Training

For dynamically labeling the unlabeled images, original COCO dataset and VOC dataset will be converted to (DSL-style) datasets where annotations are saved in different json files and each image has its own annotation file. In addition, this implementation is slightly different from the original paper, where we clean the code, merge some data flow for speeding up training, add PatchShuffle also to the labeled images, and remove MetaNet for speeding up training as well, the final performance is similar as the original paper.

Clone this project & Create data root dir

cd ${project_root_dir}
git clone https://github.com/chenbinghui1/DSL.git
mkdir data
mkdir ori_data

#resulting format
#${project_root_dir}
#      - ori_data
#      - data
#      - DSL
#        - configs
#        - ...

For COCO Partially Labeled Data protocol

1. Download coco dataset and unzip it

mkdir ori_data/coco
cd ori_data/coco

wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/unlabeled2017.zip

unzip annotations_trainval2017.zip -d .
unzip -q train2017.zip -d .
unzip -q val2017.zip -d .
unzip -q unlabeled2017.zip -d .

# resulting format
# ori_data/coco
#   - train2017
#     - xxx.jpg
#   - val2017
#     - xxx.jpg
#   - unlabled2017
#     - xxx.jpg
#   - annotations
#     - xxx.json
#     - ...

2. Convert coco to semicoco dataset

Use (tools/coco_convert2_semicoco_json.py) to generate the DSL-style coco data dir, i.e., semicoco/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/coco_convert2_semicoco_json.py --input ${project_root_dir}/ori_data/coco --output ${project_root_dir}/data/semicoco

You will obtain ${project_root_dir}/data/semicoco/ dir

3. Prepare partially labeled data

Use (data_list/coco_semi/prepare_dta.py) to generate the partially labeled data list_file. Now we take 10% labeled data as example

cd data_list/coco_semi/
python3 prepare_dta.py --percent 10 --root ${project_root_dir}/ori_data/coco --seed 2

You will obtain (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}.json) (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabel.json) (data_list/coco_semi/semi_supervised/instances_train2017.json) (data_list/coco_semi/semi_supervised/instances_val2017.json)

These above files are only used as image_list.

4. Train supervised baseline model

Train base model via (demo/model_train/baseline_coco.sh); configs are in dir (configs/fcos_semi/); Before running this script please change the corresponding file path in both script and config files.

cd ${project_root_dir}/DSL
./demo/model_train/baseline_coco.sh

5. Generate initial pseudo-labels for unlabeled images(1/2)

Generate the initial pseudo-labels for unlabeled images via (tools/inference_unlabeled_coco_data.sh): please change the corresponding list file path of unlabeled data in the config file, and the model path in tools/inference_unlabeled_coco_data.sh.

./tools/inference_unlabeled_coco_data.sh

Then you will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json) which contains the pseudo-labels.

6. Generate initial pseudo-labels for unlabeled images(2/2)

Use (tools/generate_unlabel_annos_coco.py) to convert the produced (epoch_xxx.pth-unlabeled.bbox.json) above to DSL-style annotations

python3 tools/generate_unlabel_annos_coco.py \ 
          --input_path workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json \
          --input_list data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabeled.json \
          --cat_info ${project_root_dir}/data/semicoco/mmdet_category_info.json \
          --thres 0.1

You will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json_thres0.1_annos/) dir which contains the DSL-style annotations.

7. DSL Training

Use (demo/model_train/unlabel_train.sh) to train our semi-supervised algorithm. Before training, please change the corresponding paths in config file and shell script.

./demo/model_train/unlabel_train.sh

For COCO Fully Labeled Data protocol

The overall steps are similar as steps in above Partially Labeled Data guaidline. The additional steps to do is to download and organize the new unlabeled data.

1. Organize the new images

Put all the jpg images into the generated DSL-style semicoco data dir like: semicoco/unlabel_images/full/xx.jpg;

cd ${project_root_dir}
cp ori_data/coco/unlabled2017/* data/semicoco/unlabel_images/full/

2. Download the corresponding files

Download (STAC_JSON.tar.gz) and unzip it; move (coco/annotations/instances_unlabeled2017.json) to (data_list/coco_semi/semi_supervised/) dir

cd ${project_root_dir}/ori_data
wget https://storage.cloud.google.com/gresearch/ssl_detection/STAC_JSON.tar
tar -xf STAC_JSON.tar.gz

# resulting files
# coco/annotations/instances_unlabeled2017.json
# coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json
# voc/VOCdevkit/VOC2007/instances_diff_test.json
# voc/VOCdevkit/VOC2007/instances_diff_trainval.json
# voc/VOCdevkit/VOC2007/instances_test.json
# voc/VOCdevkit/VOC2007/instances_trainval.json
# voc/VOCdevkit/VOC2012/instances_diff_trainval.json
# voc/VOCdevkit/VOC2012/instances_trainval.json

cp coco/annotations/instances_unlabeled2017.json ${project_root_dir}/DSL/data_list/coco_semi/semi_supervised/

3. Train as steps4-steps7 which are used in Partially Labeled data protocol

Change the corresponding paths before training.

For VOC dataset

1. Download VOC data

Download VOC dataset to dir xx and unzip it, we will get (VOCdevkit/)

cd ${project_root_dir}/ori_data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

# resulting format
# ori_data/
#   - VOCdevkit
#     - VOC2007
#       - Annotations
#       - JPEGImages
#       - ...
#     - VOC2012
#       - Annotations
#       - JPEGImages
#       - ...

2. Convert voc to semivoc dataset

Use (tools/voc_convert2_semivoc_json.py) to generate DSL-style voc data dir, i.e., semivoc/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/voc_convert2_semivoc_json.py --input ${project_root_dir}/ori_data/VOCdevkit --output ${project_root_dir}/data/semivoc

And then use (tools/dataset_converters/pascal_voc.py) to convert the original voc list file to coco style file for evaluating VOC performances under COCO 'bbox' metric.

python3 tools/dataset_converters/pascal_voc.py ${project_root_dir}/ori_data/VOCdevkit -o data_list/voc_semi/ --out-format coco

You will obtain the list files in COCO-Style in dir: data_list/voc_semi/. These files are only used as val files, please refer to (configs/fcos_semi/voc/xx.py)

3. Combine with coco20class images

Copy (instances_unlabeledtrainval20class.json) to (data_list/voc_semi/) dir; and then run script (data_list/voc_semi/combine_coco20class_voc12.py) to produce the additional unlabel set with coco20classes.

cp ${project_root_dir}/ori_data/coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json data_list/voc_semi/
cd data_list/voc_semi
python3 data_list/voc_semi/combine_coco20class_voc12.py \
                --cocojson instances_unlabeledtrainval20class.json \
                --vocjson voc12_trainval.json \
                --cocoimage_path ${project_root_dir}/data/semicoco/images/full \
                --outtxt_path ${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/ \
                --outimage_path ${project_root_dir}/data/semivoc/unlabel_images/full
cd ../..

You will obtain the corresponding list file(.json): (voc12_trainval_coco20class.json), and the corresponding coco20classes images will be copyed to (${project_root_dir}/data/semivoc/unlabeled_images/full/) and the list file(.txt) will also be generated at (${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/voc12_trainval_coco20class.txt)

4. Train as steps4-steps7 which are used in Partially Labeled data protocol

Please change the corresponding paths before training, and refer to configs/fcos_semi/voc/xx.py.

Testing

Please refer to (tools/semi_dist_test.sh).

./tools/semi_dist_test.sh

Acknowledgement

Owner
Bhchen
Bhchen
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021