This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

Overview

BiCAT

This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transformer". Our code is implemented based on Tensorflow version of SASRec and ASReP.

Environment

  • TensorFlow 1.12
  • Python 3.6.*

Datasets Prepare

Benchmarks: Amazon Review datasets Beauty, Movie Lens and Cell_Phones_and_Accessories. The data split is done in the leave-one-out setting. Make sure you download the datasets from the link. Please, use the DataProcessing.py under the data/, and make sure you change the DATASET variable value to your dataset name, then you run:

python DataProcessing.py

You will find the processed dataset in the directory with the name of your input dataset.

Beauty

1. Reversely Pre-training and Short Sequence Augmentation

Pre-train the model and output 20 items for sequences with length <= 20.

python main.py \
       --dataset=Beauty \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=128 \
       --maxlen=100 \
       --dropout_rate=0.7 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=4 \
       --evalnegsample 100 \
       --reversed 1 \
       --reversed_gen_num 20 \
       --M 20

2. Next-Item Prediction with Reversed-Pre-Trained Model and Augmented dataset

python main.py \
       --dataset=Beauty \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=128 \
       --maxlen=100 \
       --dropout_rate=0.7 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=4 \
       --evalnegsample 100 \
       --reversed_pretrain 1 \
       --aug_traindata 15 \
       --M 18

Cell_Phones_and_Accessories

1. Reversely Pre-training and Short Sequence Augmentation

Pre-train the model and output 20 items for sequences with length <= 20.

python main.py \
       --dataset=Cell_Phones_and_Accessories \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=32 \
       --maxlen=100 \
       --dropout_rate=0.5 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=2 \
       --evalnegsample 100 \
       --reversed 1 \
       --reversed_gen_num 20 \
       --M 20

2. Next-Item Prediction with Reversed-Pre-Trained Model and Augmented dataset

python main.py \
       --dataset=Cell_Phones_and_Accessories \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=32 \
       --maxlen=100 \
       --dropout_rate=0.5 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=2 \
       --evalnegsample 100 \
       --reversed_pretrain 1 \ 
       --aug_traindata 17 \
       --M 18

Citation

@misc{jiang2021sequential,
      title={Sequential Recommendation with Bidirectional Chronological Augmentation of Transformer}, 
      author={Juyong Jiang and Yingtao Luo and Jae Boum Kim and Kai Zhang and Sunghun Kim},
      year={2021},
      eprint={2112.06460},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
Owner
John
My research interests are machine learning and recommender systems.
John
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021