Complete* list of autonomous driving related datasets

Overview

AD Datasets

Complete* and curated list of autonomous driving related datasets

Contributing

Contributions are very welcome! To add or update a dataset:

  • Update my-app/src/data.js: image

  • Make sure the dataset you add or edit has as many attributes as possible filled out:

    • Some attributes can only be found in associated papers
    • Some attributes can only be found in associated websites
    • Some attributes can only be found in the dataset itself
  • Send a pull request based on the created fork

Example Contribution

This is how the KITTI dataset is integrated into the website:

[...]
{
    id: "KITTI", //07.08. fertig
    href: "http://www.cvlibs.net/datasets/kitti/",
    size_hours: "6",
    size_storage: "180",
    frames: "",
    numberOfScenes: '50',
    samplingRate: "10",
    lengthOfScenes: "",
    sensors: "camera, lidar, gps/imu",
    sensorDetail: "2 greyscale cameras 1.4 MP, 2 color cameras 1.4 MP, 1 lidar 64 beams 360° 10Hz, 1 inertial and " +
        "GPS navigation system",
    benchmark: " stereo, optical flow, visual odometry, slam, 3d object detection, 3d object tracking",
    annotations: "3d bounding boxes",
    licensing: "Creative Commons Attribution-NonCommercial-ShareAlike 3.0",
    relatedDatasets: 'Semantic KITTI, KITTI-360',
    publishDate: new Date("2012-3").toISOString().split('T')[0],
    lastUpdate: new Date("2021-2").toISOString().split('T')[0],
    relatedPaper: "http://www.cvlibs.net/publications/Geiger2013IJRR.pdf",
    location: "Karlsruhe, Germany",
    rawData: "Yes"
},
[...]

* You're missing a dataset? Simply create a pull request ;)

Metadata

In the following, the scheme according to which the entries of the respective properties have resulted is illuminated.

Annotations

This property describes the types of annotations with which the data sets have been provided.

Benchmark

If benchmark challenges are explicitly listed with the data sets, they are specified here.

Frames

Frames states the number of frames in the data set. This includes training, test and validation data.

Last Update

If information has been provided on updates and their dates, they can be found in this category.

Licensing

In order to give the users an impression of the licenses of the data sets, information on them is already included in the tool. Location. This category lists the areas where the data sets have been recorded.

N° Scenes

N° Scenes shows the number of scenes contained in the data set and includes the training, testing and validation segments. In the case of video recordings, one recording corresponds to one scene. For data sets consisting of photos, a photo is the equivalent to a scene.

Publish Date

The initial publication date of the data set can be found under this category. If no explicit information on the date of publication of the data set could be found, the submission date of the paper related to the set was used at this point.

Related Data Sets

If data sets are related, the names of the related sets can be examined as well. Related data sets are, for example, those published by the same authors and building on one another.

Related Paper

This property solely consists of a link to the paper related to the data set. Sampling Rate [Hz]. The Sampling Rate [Hz] property specifies the sampling rate in Hertz at which the sensors in the data set work. However, this declaration is only made if all sensors are working at the same rate or, alternatively, if the sensors are being synchronized. Otherwise the field remains empty.

Scene Length [s]

This property describes the length of the scenes in seconds in the data set, provided all scenes have the same length. Otherwise no information is given. For example, if a data set has scenes with lengths between 30 and 60 seconds, no entry can be made. The background to this procedure is to maintain comparability and sortability.

Sensor Types

This category contains a rough description of the sensor types used. Sensor types are, for example, lidar or radar.

Sensors - Details

The Sensors - Detail category is an extension of the Sensor Types category. It includes a more detailed description of the sensors. The sensors are described in detail in terms of type and number, the frame rates they work with, the resolutions which sensors have and the horizontal field of view.

Size [GB]

The category Size [GB] describes the storage size of the data set in gigabytes.

Size [h]

The Size [h] property is the equivalent of the Size [GB] described above, but provides information on the size of the data set in hours.

Location

The place(s) the data was recorded at

rawData

Denotes if the dataset provides raw or processed data

Citation

If you find this code useful for your research, please cite our paper:

@article{Bogdoll_addatasets_2022_VEHITS,
    author    = {Bogdoll, Daniel and Schreyer, Felix, and Z\"{o}llner, J. Marius},
    title     = {{ad-datasets: a meta-collection of data sets for autonomous driving}},
    journal   = {arXiv preprint:2202.01909},
    year      = {2022},
}
Owner
Daniel Bogdoll
PhD student at FZI and KIT with a focus on deep learning and autonomous driving.
Daniel Bogdoll
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021