An open-source outlier detection package by Getcontact Data Team

Related tags

Deep Learningpyfbad
Overview

pyfbad

The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of this library only.

Given below is a basic application. Each section has more alternatives like mysql under database, slack under notification or isolation forest under model.

Installation:

Python 2 is no longer supported. Make sure Python3+ is used as the programming language. The optimal version would be Python 3.7. It is recommended to use pip or conda for installation. Please make sure the latest version is installed, as pyfbad is updated frequently:

pip install pyfbad            # normal install
pip install --upgrade pyfbad  # or update if needed

Database operations:

# connet to mongodb
from pyfbad.data import database as db
database_obj = db.MongoDB('db_name', PORT, 'db_path')
database = database_obj.get_mongo_db()

# check the collections
collections = dataset_obj.get_collection_names(database)

# buil mongodb query
filter = dataset_obj.add_filter(
[],
'time',
{
    "column_name": "datetime",
    "date_type": "hourly",
    "start_time": "2019-02-06 00:00:00",
    "finish_time": "2019-10-06 00:00:00"
})

# get data from db as dataframe
data = dataset_obj.get_data_as_df(
    database=database,
    collection=collections[0],
    filter=filter
)

Feature Operations:

from pyfbad.features import create_feature as cf
cf_obj = cf.Features()
df_model = cf_obj.get_model_data(df=df, time_column_name="_id.datetime", value_column_name="_id.count", filter=['_id.country','TR'])

Model Operations:

from pyfbad.models import models as md
models=md.Model_Prophet()
model_result = models.train_model(df_model)
anomaly_result = models.train_forecast(model_result)

Notification Operations:

from pyfbad.notification import notifications as nt
gmail_obj = nt.Email()
if 1 or -1 in anomaly_result['anomaly']:
    gmail_obj.send_gmail('[email protected]','password','[email protected]')

Required Dependencies:

Depencies can be shown in requirements.txt file.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   └── pyfbad
│      ├── __init__.py    <- Makes pyfbad a Python module
│      │
│      ├── data           <- Scripts to read raw data
│      │   └── database.py
│      │   └── __init__.py
│      │
│      ├── features       <- Scripts to turn raw data into features for modeling
│      │   └── create_feature.py
│      │   └── __init__.py
│      │
│      ├── models         <- Scripts to train models and then use trained models to make
│      │   │                 predictions
│      │   └── models.py
│      │   └── __init__.py
│      │
│      └── notification  <- Scripts for setting up notification systems.
│          └── notification.py
│          └── __init__.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io
Owner
Teknasyon Tech
Open source projects from Teknasyon
Teknasyon Tech
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022