The official implementation of the Hybrid Self-Attention NEAT algorithm

Overview

REPLES LOGO

PUREPLES - Pure Python Library for ES-HyperNEAT

About

This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure python, depending on the neat-python implementation. It contains a faithful implementation of both HyperNEAT and ES-HyperNEAT which are briefly described below.

NEAT (NeuroEvolution of Augmenting Topologies) is a method developed by Kenneth O. Stanley for evolving arbitrary neural networks.
HyperNEAT (Hypercube-based NEAT) is a method developed by Kenneth O. Stanley utilizing NEAT. It is a technique for evolving large-scale neural networks using the geometric regularities of the task domain.
ES-HyperNEAT (Evolvable-substrate HyperNEAT) is a method developed by Sebastian Risi and Kenneth O. Stanley utilizing HyperNEAT. It is a technique for evolving large-scale neural networks using the geometric regularities of the task domain. In contrast to HyperNEAT, the substrate used during evolution is able to evolve. This rids the user of some initial work and often creates a more suitable substrate.

The library is extensible in regards to easy transition between experimental domains.

Getting started

This section briefly describes how to install and run experiments.

Installation Guide

First, make sure you have the dependencies installed: numpy, neat-python, graphviz, matplotlib and gym.
All the above can be installed using pip.
Next, download the source code and run setup.py (pip install .) from the root folder. Now you're able to use PUREPLES!

Experimenting

How to experiment using NEAT will not be described, since this is the responsibility of the neat-python library.

Setting up an experiment for HyperNEAT:

  • Define a substrate with input nodes and output nodes as a list of tuples. The hidden nodes is a list of lists of tuples where the inner lists represent layers. The first list is the topmost layer, the last the bottommost.
  • Create a configuration file defining various NEAT specific parameters which are used for the CPPN.
  • Define a fitness function setting the fitness of each genome. This is where the CPPN and the ANN is constructed for each generation - use the create_phenotype_network method from the hyperneat module.
  • Create a population with the configuration file made in (2).
  • Run the population with the fitness function made in (3) and the configuration file made in (2). The output is the genome solving the task or the one closest to solving it.

Setting up an experiment for ES-HyperNEAT: Use the same setup as HyperNEAT except for:

  • Not declaring hidden nodes when defining the substrate.
  • Declaring ES-HyperNEAT specific parameters.
  • Using the create_phenotype_network method residing in the es_hyperneat module when creating the ANN.

If one is trying to solve an experiment defined by the OpenAI Gym it is even easier to experiment. In the shared module a file called gym_runner is able to do most of the work. Given the number of generations, the environment to run, a configuration file, and a substrate, the relevant runner will take care of everything regarding population, fitness function etc.

Please refer to the sample experiments included for further details on experimenting.

Comments
  • The query_cppn function returns a value of discontinuity range

    The query_cppn function returns a value of discontinuity range

    Hi,

    I have a bit of improvement point about the query_cppn function in hyperneat.py. In line 85-88, a value below the threshold is replaced with 0.0, so that range [-0.2, 0.2] of the value drop out in this implementation.

    However, the original paper (http://axon.cs.byu.edu/Dan/778/papers/NeuroEvolution/stanley3**.pdf) says "The magnitude of weights above this threshold are scaled to be between zero and a maximum magnitude in the substrate." on page 8.

    Thus, I suggest changing the query_cppn function like it returns a value of continuity range [-max_val, max_val].

    opened by yamatakeru 14
  • Config always finds 5 inputs. [RuntimeError: Expected 840 inputs, got 5]

    Config always finds 5 inputs. [RuntimeError: Expected 840 inputs, got 5]

     ****** Running generation 0 ******
    
    Traceback (most recent call last):
      File "c:\Users\Silver\.vscode\extensions\ms-python.python-2020.2.64397\pythonFiles\ptvsd_launcher.py", line 48, in <module>
        main(ptvsdArgs)
      File "c:\Users\Silver\.vscode\extensions\ms-python.python-2020.2.64397\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 432, in main
        run()
      File "c:\Users\Silver\.vscode\extensions\ms-python.python-2020.2.64397\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 316, in run_file
        runpy.run_path(target, run_name='__main__')
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 263, in run_path
        pkg_name=pkg_name, script_name=fname)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 96, in _run_module_code
        mod_name, mod_spec, pkg_name, script_name)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "g:\Emulators\ML AI open AI\env2.py", line 51, in <module>
        winner = run(200, env)[0]
      File "g:\Emulators\ML AI open AI\env2.py", line 37, in run
        winner, stats = run_es(gens, env, 200, config, params, sub, max_trials=200)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\shared\gym_runner.py", line 50, in run_es
        pop.run(eval_fitness, gens)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\neat\population.py", line 89, in run
        fitness_function(list(iteritems(self.population)), self.config)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\shared\gym_runner.py", line 25, in eval_fitness
        net = network.create_phenotype_network()
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\es_hyperneat\es_hyperneat.py", line 46, in create_phenotype_network
        hidden_nodes, connections = self.es_hyperneat()
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\es_hyperneat\es_hyperneat.py", line 151, in es_hyperneat
        root = self.division_initialization((x, y), True)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\es_hyperneat\es_hyperneat.py", line 110, in division_initialization
        c.w = query_cppn(coord, (c.x, c.y), outgoing, self.cppn, self.max_weight)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\hyperneat\hyperneat.py", line 84, in query_cppn
        w = cppn.activate(i)[0]
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\neat\nn\feed_forward.py", line 14, in activate
        raise RuntimeError("Expected {0:n} inputs, got {1:n}".format(len(self.input_nodes), len(inputs)))
    RuntimeError: Expected 840 inputs, got 5
    

    I ran this through the Debugger and found that at some point some random float values replace the existing number of inputs that initially gets set.

    I could even see that at some point during execution the correct number of inputs was actually used.

    I've been fighting to find the cause and I've come to the conclusion that something has to be wrong in the module.

    for some context, I took one of the examples and attempted to configure it to run a gym retro env.

    As you can see though the only thing stopping me is the inputs being messed up somehow.

    If you need more information please let me know.

    opened by SilverDash 12
  • Question about discrete gym runner observation space

    Question about discrete gym runner observation space

    Hi!

    Very cool project, thanks for making it available. I have a toy project I am working on with Gym for function approximation, and which is a discrete-valued observation space consisting of 12 integers; action space is also discrete-valued, three integers used to determine the correct agent action based on the sequence of 12 integers.

    So does pureples support discrete observation and action spaces, and would the cartpole experiment make for a good starting point for this?

    Thanks in advance!

    opened by pablogranolabar 5
  • Line 169 in es_hyperneat.py is different from the algorithm in the original paper

    Line 169 in es_hyperneat.py is different from the algorithm in the original paper

    Hi,

    The following part seems to be different from the algorithm in https://eplex.cs.ucf.edu/papers/risi_alife12.pdf.

    160 | for i in range(self.iteration_level):  # Explore from hidden.
    161 |     for x, y in unexplored_hidden_nodes:
    162 |         root = self.division_initialization((x, y), True)
    163 |         self.pruning_extraction((x, y), root, True)
    164 |         connections2 = connections2.union(self.connections)
    165 |         for c in connections2:
    166 |             hidden_nodes.add((c.x2, c.y2))
    167 |         self.connections = set()
    168 | 
    169 | unexplored_hidden_nodes -= hidden_nodes
    

    According to pseudocode on page 47, line 169 should be indented once again. Also, unexplored_hidden_nodes will always be the empty set if we remove hidden_nodes from unexplored_hidden_nodes (because hidden_nodes is always greater than unexplored_hidden_nodes). I think it needs to be corrected as follows.

    160 | for i in range(self.iteration_level):  # Explore from hidden.
    161 |     for x, y in unexplored_hidden_nodes:
    162 |         root = self.division_initialization((x, y), True)
    163 |         self.pruning_extraction((x, y), root, True)
    164 |         connections2 = connections2.union(self.connections)
    165 |         for c in connections2:
    166 |             hidden_nodes.add((c.x2, c.y2))
    167 |         self.connections = set()
    168 | 
    169 - unexplored_hidden_nodes -= hidden_nodes
        +     unexplored_hidden_nodes = hidden_nodes - unexplored_hidden_nodes
    
    opened by yamatakeru 3
  • ES-HyperNEAT for OpenAI-Gyms SpaceInvader

    ES-HyperNEAT for OpenAI-Gyms SpaceInvader

    Hey,

    First of all you did great work, easy to use and understand! What I am trying to do is, using ES-HyperNEAT to exploit the Geometrical Informations in the Picture's Pixels of an Atari Game. OpenAI Gym gives an observationspace of (210, 160, 3), i have downsized it to (84, 84, 1) without colours. These are 7056 input-Nodes, instead of 100800.

    Now the Problem is that the outputs of the substrate's outputnodes are always Zero.

    The Input Layout is:

    for y in range(1,85):
    	for x in range(1,85):
    		input_coordinates.append((x , y))
    

    Is there some configuration in the CPPN i should watch out for, is the substrate too large, or is there a max Range for the Node-Placment in the substrat (exp just between -1, 1)?

    Thanks in advance!

    opened by Multiv4c 3
  • Question about inference with evolved ANN

    Question about inference with evolved ANN

    Hi @ukuleleplayer,

    I've been working on a PUREPLES-based project with your gym runner but I can't find any resources on inference with an evolved ANN? It looks like the phenotype gets pickled and model saved whenever the reward in +1., but what type of model format is that in and how to deploy for inference tasks?

    What I want to do is implement an additional loop whenever a +1. reward is found, to test it n more times to see if it has generalized to other examples.

    And does it make sense to restart an episode on each of those saved pickles for subsequent runs?

    TIA!

    opened by pablogranolabar 2
  • Connection's __eq__ does not return a boolean in es_hyperneat.py.

    Connection's __eq__ does not return a boolean in es_hyperneat.py.

    Hi.

    Connection's __eq__ is expected to return a boolean, but it returns a tuple (float, float, float, bool, float, float, float). However, the library seems to be working correctly at first glance.

    Tentatively, I will create a PR.

    opened by yamatakeru 2
  • Missing list() in es_hyperneat.py / unsupported operand type(s) for +: 'range' and 'range'

    Missing list() in es_hyperneat.py / unsupported operand type(s) for +: 'range' and 'range'

    Hi, I think in es_hyperneat.py on line 30/31 the ranges for the input- and output_nodes should be transformed to a list with list().

    Otherwise return neat.nn.RecurrentNetwork(input_nodes, output_nodes, node_evals) throws an error: unsupported operand type(s) for +: 'range' and 'range'

    Without that change skripts like es_hyperneat_xor_large.py do not work.

    The same problem seems to appear in hyperneat.py

    opened by DaKnick 2
  • The relationship between ESNetwork.activations and max_depth

    The relationship between ESNetwork.activations and max_depth

    Could anyone please explain the following line of code in es_hyperneat.py?

            # Number of layers in the network.
            self.activations = 2 ** params["max_depth"] + 1
    

    Thank you very much.

    opened by lester1027 1
  • network.create_phenotype_network() executing for more than 30 minutes when input and output sizes are (49360,) and (1024,) respectively

    network.create_phenotype_network() executing for more than 30 minutes when input and output sizes are (49360,) and (1024,) respectively

    I have been trying to use ES-Hyperneat on a custom environment. The size of input to ES-Network is (49360,) and for output is (1024,). The "net = network.create_phenotype_network()" method is sometimes taking more than 30 minutes to execute for a single genome. Does it mean that the larger the size of input and output of network the more time it will take to create network?

    Is there any solution for this?

    opened by Abdul-Wahab-mc 1
  • Multiple activation function support for ES-HyperNEAT?

    Multiple activation function support for ES-HyperNEAT?

    Hi @ukuleleplayer

    I've noticed that all of the examples use sigmoid activation functions for ES-HyperNEAT; is the use of multiple activation function at the per-neuron level possible with PUREPLES?

    Or any activation function other than sigmoid for ES-HyperNEAT?

    TIA

    opened by pablogranolabar 1
  • Question about run_hyper()

    Question about run_hyper()

    Hi, first of all thank you for your library, it's great! I am going through the code trying to understand what each step does, regarding the pole balancing environment. There is a point that really leaves me confused: in run_hyper(), it seems we create the population and test it for one trial, then again for 10 trials, and then for max_trials trials. Any reason to do that? Thanks

    opened by ValerioB88 0
Releases(v0.0-alpha)
Owner
Adrian Westh
Data Conscious Software Developer
Adrian Westh
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022