The official implementation of the Hybrid Self-Attention NEAT algorithm

Overview

REPLES LOGO

PUREPLES - Pure Python Library for ES-HyperNEAT

About

This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure python, depending on the neat-python implementation. It contains a faithful implementation of both HyperNEAT and ES-HyperNEAT which are briefly described below.

NEAT (NeuroEvolution of Augmenting Topologies) is a method developed by Kenneth O. Stanley for evolving arbitrary neural networks.
HyperNEAT (Hypercube-based NEAT) is a method developed by Kenneth O. Stanley utilizing NEAT. It is a technique for evolving large-scale neural networks using the geometric regularities of the task domain.
ES-HyperNEAT (Evolvable-substrate HyperNEAT) is a method developed by Sebastian Risi and Kenneth O. Stanley utilizing HyperNEAT. It is a technique for evolving large-scale neural networks using the geometric regularities of the task domain. In contrast to HyperNEAT, the substrate used during evolution is able to evolve. This rids the user of some initial work and often creates a more suitable substrate.

The library is extensible in regards to easy transition between experimental domains.

Getting started

This section briefly describes how to install and run experiments.

Installation Guide

First, make sure you have the dependencies installed: numpy, neat-python, graphviz, matplotlib and gym.
All the above can be installed using pip.
Next, download the source code and run setup.py (pip install .) from the root folder. Now you're able to use PUREPLES!

Experimenting

How to experiment using NEAT will not be described, since this is the responsibility of the neat-python library.

Setting up an experiment for HyperNEAT:

  • Define a substrate with input nodes and output nodes as a list of tuples. The hidden nodes is a list of lists of tuples where the inner lists represent layers. The first list is the topmost layer, the last the bottommost.
  • Create a configuration file defining various NEAT specific parameters which are used for the CPPN.
  • Define a fitness function setting the fitness of each genome. This is where the CPPN and the ANN is constructed for each generation - use the create_phenotype_network method from the hyperneat module.
  • Create a population with the configuration file made in (2).
  • Run the population with the fitness function made in (3) and the configuration file made in (2). The output is the genome solving the task or the one closest to solving it.

Setting up an experiment for ES-HyperNEAT: Use the same setup as HyperNEAT except for:

  • Not declaring hidden nodes when defining the substrate.
  • Declaring ES-HyperNEAT specific parameters.
  • Using the create_phenotype_network method residing in the es_hyperneat module when creating the ANN.

If one is trying to solve an experiment defined by the OpenAI Gym it is even easier to experiment. In the shared module a file called gym_runner is able to do most of the work. Given the number of generations, the environment to run, a configuration file, and a substrate, the relevant runner will take care of everything regarding population, fitness function etc.

Please refer to the sample experiments included for further details on experimenting.

Comments
  • The query_cppn function returns a value of discontinuity range

    The query_cppn function returns a value of discontinuity range

    Hi,

    I have a bit of improvement point about the query_cppn function in hyperneat.py. In line 85-88, a value below the threshold is replaced with 0.0, so that range [-0.2, 0.2] of the value drop out in this implementation.

    However, the original paper (http://axon.cs.byu.edu/Dan/778/papers/NeuroEvolution/stanley3**.pdf) says "The magnitude of weights above this threshold are scaled to be between zero and a maximum magnitude in the substrate." on page 8.

    Thus, I suggest changing the query_cppn function like it returns a value of continuity range [-max_val, max_val].

    opened by yamatakeru 14
  • Config always finds 5 inputs. [RuntimeError: Expected 840 inputs, got 5]

    Config always finds 5 inputs. [RuntimeError: Expected 840 inputs, got 5]

     ****** Running generation 0 ******
    
    Traceback (most recent call last):
      File "c:\Users\Silver\.vscode\extensions\ms-python.python-2020.2.64397\pythonFiles\ptvsd_launcher.py", line 48, in <module>
        main(ptvsdArgs)
      File "c:\Users\Silver\.vscode\extensions\ms-python.python-2020.2.64397\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 432, in main
        run()
      File "c:\Users\Silver\.vscode\extensions\ms-python.python-2020.2.64397\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 316, in run_file
        runpy.run_path(target, run_name='__main__')
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 263, in run_path
        pkg_name=pkg_name, script_name=fname)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 96, in _run_module_code
        mod_name, mod_spec, pkg_name, script_name)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "g:\Emulators\ML AI open AI\env2.py", line 51, in <module>
        winner = run(200, env)[0]
      File "g:\Emulators\ML AI open AI\env2.py", line 37, in run
        winner, stats = run_es(gens, env, 200, config, params, sub, max_trials=200)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\shared\gym_runner.py", line 50, in run_es
        pop.run(eval_fitness, gens)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\neat\population.py", line 89, in run
        fitness_function(list(iteritems(self.population)), self.config)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\shared\gym_runner.py", line 25, in eval_fitness
        net = network.create_phenotype_network()
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\es_hyperneat\es_hyperneat.py", line 46, in create_phenotype_network
        hidden_nodes, connections = self.es_hyperneat()
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\es_hyperneat\es_hyperneat.py", line 151, in es_hyperneat
        root = self.division_initialization((x, y), True)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\es_hyperneat\es_hyperneat.py", line 110, in division_initialization
        c.w = query_cppn(coord, (c.x, c.y), outgoing, self.cppn, self.max_weight)
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\pureples\hyperneat\hyperneat.py", line 84, in query_cppn
        w = cppn.activate(i)[0]
      File "C:\Users\Silver\AppData\Local\Programs\Python\Python37\lib\site-packages\neat\nn\feed_forward.py", line 14, in activate
        raise RuntimeError("Expected {0:n} inputs, got {1:n}".format(len(self.input_nodes), len(inputs)))
    RuntimeError: Expected 840 inputs, got 5
    

    I ran this through the Debugger and found that at some point some random float values replace the existing number of inputs that initially gets set.

    I could even see that at some point during execution the correct number of inputs was actually used.

    I've been fighting to find the cause and I've come to the conclusion that something has to be wrong in the module.

    for some context, I took one of the examples and attempted to configure it to run a gym retro env.

    As you can see though the only thing stopping me is the inputs being messed up somehow.

    If you need more information please let me know.

    opened by SilverDash 12
  • Question about discrete gym runner observation space

    Question about discrete gym runner observation space

    Hi!

    Very cool project, thanks for making it available. I have a toy project I am working on with Gym for function approximation, and which is a discrete-valued observation space consisting of 12 integers; action space is also discrete-valued, three integers used to determine the correct agent action based on the sequence of 12 integers.

    So does pureples support discrete observation and action spaces, and would the cartpole experiment make for a good starting point for this?

    Thanks in advance!

    opened by pablogranolabar 5
  • Line 169 in es_hyperneat.py is different from the algorithm in the original paper

    Line 169 in es_hyperneat.py is different from the algorithm in the original paper

    Hi,

    The following part seems to be different from the algorithm in https://eplex.cs.ucf.edu/papers/risi_alife12.pdf.

    160 | for i in range(self.iteration_level):  # Explore from hidden.
    161 |     for x, y in unexplored_hidden_nodes:
    162 |         root = self.division_initialization((x, y), True)
    163 |         self.pruning_extraction((x, y), root, True)
    164 |         connections2 = connections2.union(self.connections)
    165 |         for c in connections2:
    166 |             hidden_nodes.add((c.x2, c.y2))
    167 |         self.connections = set()
    168 | 
    169 | unexplored_hidden_nodes -= hidden_nodes
    

    According to pseudocode on page 47, line 169 should be indented once again. Also, unexplored_hidden_nodes will always be the empty set if we remove hidden_nodes from unexplored_hidden_nodes (because hidden_nodes is always greater than unexplored_hidden_nodes). I think it needs to be corrected as follows.

    160 | for i in range(self.iteration_level):  # Explore from hidden.
    161 |     for x, y in unexplored_hidden_nodes:
    162 |         root = self.division_initialization((x, y), True)
    163 |         self.pruning_extraction((x, y), root, True)
    164 |         connections2 = connections2.union(self.connections)
    165 |         for c in connections2:
    166 |             hidden_nodes.add((c.x2, c.y2))
    167 |         self.connections = set()
    168 | 
    169 - unexplored_hidden_nodes -= hidden_nodes
        +     unexplored_hidden_nodes = hidden_nodes - unexplored_hidden_nodes
    
    opened by yamatakeru 3
  • ES-HyperNEAT for OpenAI-Gyms SpaceInvader

    ES-HyperNEAT for OpenAI-Gyms SpaceInvader

    Hey,

    First of all you did great work, easy to use and understand! What I am trying to do is, using ES-HyperNEAT to exploit the Geometrical Informations in the Picture's Pixels of an Atari Game. OpenAI Gym gives an observationspace of (210, 160, 3), i have downsized it to (84, 84, 1) without colours. These are 7056 input-Nodes, instead of 100800.

    Now the Problem is that the outputs of the substrate's outputnodes are always Zero.

    The Input Layout is:

    for y in range(1,85):
    	for x in range(1,85):
    		input_coordinates.append((x , y))
    

    Is there some configuration in the CPPN i should watch out for, is the substrate too large, or is there a max Range for the Node-Placment in the substrat (exp just between -1, 1)?

    Thanks in advance!

    opened by Multiv4c 3
  • Question about inference with evolved ANN

    Question about inference with evolved ANN

    Hi @ukuleleplayer,

    I've been working on a PUREPLES-based project with your gym runner but I can't find any resources on inference with an evolved ANN? It looks like the phenotype gets pickled and model saved whenever the reward in +1., but what type of model format is that in and how to deploy for inference tasks?

    What I want to do is implement an additional loop whenever a +1. reward is found, to test it n more times to see if it has generalized to other examples.

    And does it make sense to restart an episode on each of those saved pickles for subsequent runs?

    TIA!

    opened by pablogranolabar 2
  • Connection's __eq__ does not return a boolean in es_hyperneat.py.

    Connection's __eq__ does not return a boolean in es_hyperneat.py.

    Hi.

    Connection's __eq__ is expected to return a boolean, but it returns a tuple (float, float, float, bool, float, float, float). However, the library seems to be working correctly at first glance.

    Tentatively, I will create a PR.

    opened by yamatakeru 2
  • Missing list() in es_hyperneat.py / unsupported operand type(s) for +: 'range' and 'range'

    Missing list() in es_hyperneat.py / unsupported operand type(s) for +: 'range' and 'range'

    Hi, I think in es_hyperneat.py on line 30/31 the ranges for the input- and output_nodes should be transformed to a list with list().

    Otherwise return neat.nn.RecurrentNetwork(input_nodes, output_nodes, node_evals) throws an error: unsupported operand type(s) for +: 'range' and 'range'

    Without that change skripts like es_hyperneat_xor_large.py do not work.

    The same problem seems to appear in hyperneat.py

    opened by DaKnick 2
  • The relationship between ESNetwork.activations and max_depth

    The relationship between ESNetwork.activations and max_depth

    Could anyone please explain the following line of code in es_hyperneat.py?

            # Number of layers in the network.
            self.activations = 2 ** params["max_depth"] + 1
    

    Thank you very much.

    opened by lester1027 1
  • network.create_phenotype_network() executing for more than 30 minutes when input and output sizes are (49360,) and (1024,) respectively

    network.create_phenotype_network() executing for more than 30 minutes when input and output sizes are (49360,) and (1024,) respectively

    I have been trying to use ES-Hyperneat on a custom environment. The size of input to ES-Network is (49360,) and for output is (1024,). The "net = network.create_phenotype_network()" method is sometimes taking more than 30 minutes to execute for a single genome. Does it mean that the larger the size of input and output of network the more time it will take to create network?

    Is there any solution for this?

    opened by Abdul-Wahab-mc 1
  • Multiple activation function support for ES-HyperNEAT?

    Multiple activation function support for ES-HyperNEAT?

    Hi @ukuleleplayer

    I've noticed that all of the examples use sigmoid activation functions for ES-HyperNEAT; is the use of multiple activation function at the per-neuron level possible with PUREPLES?

    Or any activation function other than sigmoid for ES-HyperNEAT?

    TIA

    opened by pablogranolabar 1
  • Question about run_hyper()

    Question about run_hyper()

    Hi, first of all thank you for your library, it's great! I am going through the code trying to understand what each step does, regarding the pole balancing environment. There is a point that really leaves me confused: in run_hyper(), it seems we create the population and test it for one trial, then again for 10 trials, and then for max_trials trials. Any reason to do that? Thanks

    opened by ValerioB88 0
Releases(v0.0-alpha)
Owner
Adrian Westh
Data Conscious Software Developer
Adrian Westh
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022