ONNX Command-Line Toolbox

Overview

ONNX Command Line Toolbox

Build and Test CodeQL Sanity Coverage

  • Aims to improve your experience of investigating ONNX models.
  • Use it like onnx infershape /path/to/model.onnx. (See the usage section for more.)

Installation

Recommand to install via GitHub repo for the latest functionality.

pip install git+https://github.com/jackwish/onnxcli.git

Two alternative ways are:

  1. Install via pypi package pip install onnxcli
  2. Download and add the code tree to your $PYTHONPATH. This is for development purpose since the command line is different.
    git clone https://github.com/jackwish/onnxcli.git
    export PYTHONPATH=$(pwd)/onnxcli:${PYTHONPATH}
    python onnxcli/cli/dispatcher.py <more args>
    

The onnx draw requires dot command (graphviz) to be avaiable on your machine - which can be installed by command as below on Ubuntu/Debian.

sudo apt install -y graphviz

Usage

Once installed, the onnx and onnxcli commands are avaiable on your machine. You can play with commands such as onnx infershape /path/to/model.onnx. The general format is onnx <sub command> <dedicated arguments ...>. The sub commands are as sections below.

Check the online help with onnx --help and onnx <subcmd> --help for latest usage.

infershape

onnx infershape performs shape inference of the ONNX model. It's an CLI wrapper of onnx.shape_inference. You will find it useful to generate shape information for the models that are extracted by onnx extract.

extract

onnx extract extracts the sub model that is determined by the names of the input and output tensor of the subgraph from the original model. It's a CLI wrapper of onnx.utils.extract_model (which I authorized in the ONNX repo).

inspect

onnx inspect gives you quick view of the information of the given model. It's inspired by the tf-onnx tool.

When working on deep learning, you may like to take a look at what's inside the model. Netron is powerful but doesn't provide fine-grain view.

With onnx inspect, you no longer need to scroll the Netron window to look for nodes or tensors. Instead, you can dump the node attributes and tensor values with a single command.

Click here to see a node example

$ onnx inspect ./assets/tests/conv.float32.onnx --node --indices 0 --detail

Inpect of model ./assets/tests/conv.float32.onnx Graph name: 9 Graph inputs: 1 Graph outputs: 1 Nodes in total: 1 ValueInfo in total: 2 Initializers in total: 2 Sparse Initializers in total: 0 Quantization in total: 0

Node information: Node "output": type "Conv", inputs "['input', 'Variable/read', 'Conv2D_bias']", outputs "['output']" attributes: [name: "dilations" ints: 1 ints: 1 type: INTS , name: "group" i: 1 type: INT , name: "kernel_shape" ints: 3 ints: 3 type: INTS , name: "pads" ints: 1 ints: 1 ints: 1 ints: 1 type: INTS , name: "strides" ints: 1 ints: 1 type: INTS ]

Click here to see a tensor example

$ onnx inspect ./assets/tests/conv.float32.onnx --tensor --names Conv2D_bias --detail

Inpect of model ./assets/tests/conv.float32.onnx Graph name: 9 Graph inputs: 1 Graph outputs: 1 Nodes in total: 1 ValueInfo in total: 2 Initializers in total: 2 Sparse Initializers in total: 0 Quantization in total: 0

Tensor information: Initializer "Conv2D_bias": type FLOAT, shape [16], float data: [0.4517577290534973, -0.014192663133144379, 0.2946248948574066, -0.9742919206619263, -1.2975586652755737, 0.7223454117774963, 0.7835700511932373, 1.7674627304077148, 1.7242872714996338, 1.1230682134628296, -0.2902531623840332, 0.2627834975719452, 1.0175092220306396, 0.5643373131752014, -0.8244842290878296, 1.2169424295425415]

draw

onnx draw draws the graph in dot, svg, png formats. It gives you quick view of the type and shape of the tensors that are fed to a specific node. You can view the model topology in image viewer of browser without waiting for the model to load, which I found is really helpful for large models.

If you are viewing svg in browser, you can even quick search for the nodes and tensors. Together with onnx inspect, it will be very efficient to understand the issue you are looking into.

The node are in ellipses and tensors are in rectangles where the rounded ones are initializers. The node type of the node and the data type and shape of the tenors are also rendered. Here is a Convolution node example.

conv

Contributing

Welcome to contribute new commands or enhance them. Let's make our life easier together.

The workflow is pretty simple:

  1. Starting with GitHub Codespace or clone locally.
  • make setup to config the dependencies (or pip install -r ./requirements.txt if you prefer).
  1. Create a new subcommand
  • Starting by copying and modifying infershape.
  • Register the command in the dispatcher
  • Create a new command line test
  • make test to build and test.
  • make check and make format to fix any code style issues.
  1. Try out, debug, commit, push, and open pull request.
  • The code has been protected by CI. You need to get a pass before merging.
  • Ask if any questions.

License

Apache License Version 2.0.

Comments
  • Some ONNX models don't list activation tensors in GraphProto.value_info

    Some ONNX models don't list activation tensors in GraphProto.value_info

    They should, but they don't. I am not sure why such models behave like this - they cannot pass the ONNX model checker.

    There should be something wrong with the exporter. I can try to figure out which exporter has such issues.

    For onnxcli, any functionality depending on walking GraphProto.value_info may not show the real model. This is not our defect, but the models'. To workaround, you can firstly run shape inference on the model, and the GraphProto.value_info listing issue will be fixed.

    onnx infershape /path/to/input/model /path/to/output/model
    
    documentation 
    opened by zhenhuaw-me 2
  • Integrate the onnx dumper

    Integrate the onnx dumper

    src: https://github.com/onnx/tensorflow-onnx/blob/master/tools/dump-onnx.py

    most of them need to be renamed.

    • [x] inspect to check the model
    • [x] dump dot has high priotiry
    • [ ] print to std if no file specified
    opened by zhenhuaw-me 0
  • Optimizer reports

    Optimizer reports "Unresolved value references" since v0.3.0

    Via pipeline https://github.com/zhenhuaw-me/onnxcli/actions/runs/3453474851/jobs/5764096907.

    A simple model works no issue till optimizer v0.2.7 (verified locally), but starts to fail with optimizer v0.3.0 (verified locally) and still fail with v0.3.2 (the pipeline).

    It's onnx optimize ./assets/tests/conv.float32.onnx optimized.onnx.

    opened by zhenhuaw-me 2
  • Overwrite weights (initializers) with fixed data or random data

    Overwrite weights (initializers) with fixed data or random data

    Bert series ONNX models are very large (x GB) thus not easy to share the real file. We can improve this process by overwriting the weights (initializers)

    • It can be fixed data (e.g. all 0.1 or other value specified), thus the model can be compressed.
    • After sharing, we can recover with numpy style random numbers.

    This can only be used as a sharing method, the generated model are not useful when evaluate accuracy.

    For better usage:

    • Annotation will be added when writing fixed data, thus when re-random we can detect automatically.
    • The tensors can be specified with names or size.
    • Only works for FP32/FP16.
    • 0 removed.
    enhancement 
    opened by zhenhuaw-me 0
  • [draw] show tensor information on the edges

    [draw] show tensor information on the edges

    We currently draw tensors as boxes and operators as circles.

    image

    The graph will be complex if large model. We draw the tensor information on the edges and keep only operators as nodes.

    enhancement 
    opened by zhenhuaw-me 0
  • [infershape] should be able to set tensor shapes - inputs and others

    [infershape] should be able to set tensor shapes - inputs and others

    infershape is not very useful if the input shapes are symbolics (dynamic shapes). If the user can set input shapes, it's more powerful:

    • If set to static shapes, the shape of the model will be known.
    • Even for symbolics, the user can update the input shapes.

    The setup should be optional, and can extend to all the tensors in the model (excluding shape op related).

    Interface should be something like below.

    onnx infershape path/to/input/model.onnx path/to/output/model.onnx --tensor-shape t1:[d0,d1] t2:[d0,d1,d3]
    
    enhancement 
    opened by zhenhuaw-me 0
  • Extract should be able to skip the input tensor names

    Extract should be able to skip the input tensor names

    We should be able to walk the graph starting with the output tensor names and auto infer the input names if not given.

    It would be interesting to figure out if the user provided input tensor names and output tensor names don't cut a subgraph.

    enhancement 
    opened by zhenhuaw-me 0
Releases(v0.2.1)
  • v0.2.1(Nov 13, 2022)

    What's Changed

    • Ping onnxoptimizer to 0.2.7 due to "Unresolved value references" issue. See more in https://github.com/zhenhuaw-me/onnxcli/issues/28
    • convert: enable onnx to json by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/10
    • inspect: print input and output tensor too by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/12
    • inspect: dump input output tensor by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/14
    • inspect: show dimension name instead of value if has any by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/17
    • draw: gen tensor info for tensors that only have name by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/18
    • setup: install the dependent python packages by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/19
    • Check command by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/21

    Full Changelog: https://github.com/zhenhuaw-me/onnxcli/compare/v0.2.0...v0.2.1

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 8, 2022)

  • v0.1.0(Dec 24, 2021)

Owner
黎明灰烬 (王振华 Zhenhua WANG)
A b[i|y]te of ML.sys|Arch|VM.
黎明灰烬 (王振华 Zhenhua WANG)
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022