Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Overview

No-Transaction Band Network:
A Neural Network Architecture for Efficient Deep Hedging

Open In Colab

Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Hedging and pricing financial derivatives while taking into account transaction costs is a tough task. Since the hedging optimization is computationally expensive or even inaccessible, risk premiums of derivatives are often overpriced. This problem prevents the liquid offering of financial derivatives.

Our proposal, "No-Transaction Band Network", enables precise hedging with much fewer simulations. This improvement leads to the offering of cheaper risk premiums and thus liquidizes the derivative market. We believe that our proposal brings the data-driven derivative business via "Deep Hedging" much closer to practical applications.

Summary

  • Deep Hedging is a deep learning-based framework to hedge financial derivatives.
  • However, a hedging strategy is hard to train due to the action dependence, i.e., an appropriate hedging action at the next step depends on the current action.
  • We propose a "No-Transaction Band Network" to overcome this issue.
  • This network circumvents the action-dependence and facilitates quick and precise hedging.

Motivation and Result

Hedging financial derivatives (exotic options in particular) in the presence of transaction cost is a hard task.

In the absence of transaction cost, the perfect hedge is accessible based on the Black-Scholes model. The real market, in contrast, always involves transaction cost and thereby makes hedging optimization much more challenging. Since the analytic formulas (such as the Black-Scholes formula of European option) are no longer available in such a market, human traders may hedge and then price derivatives based on their experiences.

Deep Hedging is a ground-breaking framework to automate and optimize such operations. In this framework, a neural network is trained to hedge derivatives so that it minimizes a proper risk measure. However, training in deep hedging suffers difficulty of action dependence since an appropriate action at the next step depends on the current action.

So, we propose "No-Transaction Band Network" for efficient deep hedging. This architecture circumvents the complication to facilitate quick training and better hedging.

loss_lookback

The learning histories above demonstrate that the no-transaction band network can be trained much quicker than the ordinary feed-forward network (See our paper for details).

price_lookback

The figure above plots the derivative price (technically derivative price spreads, which are prices subtracted by that without transaction cost) as a function of the transaction cost. The no-transaction-band network attains cheaper prices than the ordinary network and an approximate analytic formula.

Proposed Architecture: No-Transaction Band Network

The following figures show the schematic diagrams of the neural network which was originally proposed in Deep Hedging (left) and the no-transaction band network (right).

nn

  • The original network:
    • The input of the neural network uses the current hedge ratio (δ_ti) as well as other information (I_ti).
    • Since the input includes the current action δ_ti, this network suffers the complication of action-dependence.
  • The no-transaction band network:
    • This architecture computes "no-transaction band" [b_l, b_u] by a neural network and then gets the next hedge ratio by clamping the current hedge ratio inside this band.
    • Since the input of the neural network does not use the current action, this architecture can circumvent the action-dependence and facilitate training.

Give it a Try!

Open In Colab

You can try out the efficacy of No-Transaction Band Network on a Jupyter Notebook: main.ipynb.

As you can see there, the no-transaction-band can be implemented by simply adding one special layer to an arbitrary neural network.

A comprehensive library for Deep Hedging, pfhedge, is available on PyPI.

References

  • Shota Imaki, Kentaro Imajo, Katsuya Ito, Kentaro Minami and Kei Nakagawa, "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging". arXiv:2103.01775 [q-fin.CP].
  • 今木翔太, 今城健太郎, 伊藤克哉, 南賢太郎, 中川慧, "効率的な Deep Hedging のためのニューラルネットワーク構造", 人工知能学 金融情報学研究会(SIG-FIN)第 26 回研究会.
  • Hans Bühler, Lukas Gonon, Josef Teichmann and Ben Wood, "Deep hedging". Quantitative Finance, 2019, 19, 1271–1291. arXiv:1609.05213 [q-fin.CP].
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022