Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Overview

No-Transaction Band Network:
A Neural Network Architecture for Efficient Deep Hedging

Open In Colab

Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Hedging and pricing financial derivatives while taking into account transaction costs is a tough task. Since the hedging optimization is computationally expensive or even inaccessible, risk premiums of derivatives are often overpriced. This problem prevents the liquid offering of financial derivatives.

Our proposal, "No-Transaction Band Network", enables precise hedging with much fewer simulations. This improvement leads to the offering of cheaper risk premiums and thus liquidizes the derivative market. We believe that our proposal brings the data-driven derivative business via "Deep Hedging" much closer to practical applications.

Summary

  • Deep Hedging is a deep learning-based framework to hedge financial derivatives.
  • However, a hedging strategy is hard to train due to the action dependence, i.e., an appropriate hedging action at the next step depends on the current action.
  • We propose a "No-Transaction Band Network" to overcome this issue.
  • This network circumvents the action-dependence and facilitates quick and precise hedging.

Motivation and Result

Hedging financial derivatives (exotic options in particular) in the presence of transaction cost is a hard task.

In the absence of transaction cost, the perfect hedge is accessible based on the Black-Scholes model. The real market, in contrast, always involves transaction cost and thereby makes hedging optimization much more challenging. Since the analytic formulas (such as the Black-Scholes formula of European option) are no longer available in such a market, human traders may hedge and then price derivatives based on their experiences.

Deep Hedging is a ground-breaking framework to automate and optimize such operations. In this framework, a neural network is trained to hedge derivatives so that it minimizes a proper risk measure. However, training in deep hedging suffers difficulty of action dependence since an appropriate action at the next step depends on the current action.

So, we propose "No-Transaction Band Network" for efficient deep hedging. This architecture circumvents the complication to facilitate quick training and better hedging.

loss_lookback

The learning histories above demonstrate that the no-transaction band network can be trained much quicker than the ordinary feed-forward network (See our paper for details).

price_lookback

The figure above plots the derivative price (technically derivative price spreads, which are prices subtracted by that without transaction cost) as a function of the transaction cost. The no-transaction-band network attains cheaper prices than the ordinary network and an approximate analytic formula.

Proposed Architecture: No-Transaction Band Network

The following figures show the schematic diagrams of the neural network which was originally proposed in Deep Hedging (left) and the no-transaction band network (right).

nn

  • The original network:
    • The input of the neural network uses the current hedge ratio (δ_ti) as well as other information (I_ti).
    • Since the input includes the current action δ_ti, this network suffers the complication of action-dependence.
  • The no-transaction band network:
    • This architecture computes "no-transaction band" [b_l, b_u] by a neural network and then gets the next hedge ratio by clamping the current hedge ratio inside this band.
    • Since the input of the neural network does not use the current action, this architecture can circumvent the action-dependence and facilitate training.

Give it a Try!

Open In Colab

You can try out the efficacy of No-Transaction Band Network on a Jupyter Notebook: main.ipynb.

As you can see there, the no-transaction-band can be implemented by simply adding one special layer to an arbitrary neural network.

A comprehensive library for Deep Hedging, pfhedge, is available on PyPI.

References

  • Shota Imaki, Kentaro Imajo, Katsuya Ito, Kentaro Minami and Kei Nakagawa, "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging". arXiv:2103.01775 [q-fin.CP].
  • 今木翔太, 今城健太郎, 伊藤克哉, 南賢太郎, 中川慧, "効率的な Deep Hedging のためのニューラルネットワーク構造", 人工知能学 金融情報学研究会(SIG-FIN)第 26 回研究会.
  • Hans Bühler, Lukas Gonon, Josef Teichmann and Ben Wood, "Deep hedging". Quantitative Finance, 2019, 19, 1271–1291. arXiv:1609.05213 [q-fin.CP].
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022