QilingLab challenge writeup

Overview

qiling lab writeup

shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。

前情提要

Qiling 是一款功能強大的模擬框架,和 qemu user mode 類似,但可以做到更多功能,詳情請見他們的 github網站

他們有官方文件,解此題目前建議看一下。

我所解的為 aarch64 的 challenge,使用的 rootfs 為 qililng 所提供的 arm64_linux

逆向工具用 ghidra,因為我沒錢買 idapro。

First

先隨手寫個 python 用 qiling 執行 challenge binary。

import sys
from qiling import *
from qiling.const import QL_VERBOSE

sys.path.append("..")


if __name__ == "__main__":
    ql = Qiling(["qilinglab-aarch64"], "rootfs/arm64_linux",verbose=QL_VERBOSE.OFF)
    ql.run()

可以看到結果是 binary 會不正常執行,此為正常現象,有些 Challenge 沒解完會導致錯誤或是無窮迴圈。

Welcome to QilingLab.
Here is the list of challenges:
Challenge 1: Store 1337 at pointer 0x1337.
Challenge 2: Make the 'uname' syscall return the correct values.
Challenge 3: Make '/dev/urandom' and 'getrandom' "collide".
Challenge 4: Enter inside the "forbidden" loop.
Challenge 5: Guess every call to rand().
Challenge 6: Avoid the infinite loop.
Challenge 7: Don't waste time waiting for 'sleep'.
Challenge 8: Unpack the struct and write at the target address.
Challenge 9: Fix some string operation to make the iMpOsSiBlE come true.
Challenge 10: Fake the 'cmdline' line file to return the right content.
Challenge 11: Bypass CPUID/MIDR_EL1 checks.

Checking which challenge are solved...
Note: Some challenges will results in segfaults and infinite loops if they aren't solved.
[x]	

[x]	x0	:	 0x0
[x]	x1	:	 0x0
[x]	x2	:	 0x1
[x]	x3	:	 0x0
[x]	x4	:	 0x0

Challenge 1

把 0x1337 的位置的值改成 1337

用 qiling 把該位置的 memory 讀出來,在進行改寫,要注意 align 問題。詳情請見文件

    ql.mem.map(0x1337//4096*4096, 4096)
    ql.mem.write(0x1337,ql.pack16(1337) )

Challenge 2

改掉 uname 此 system call 的 return。

可以看到他去比對 uname.sysname 和 uname.version 是否為特定值。我採用對 system call 進行 hijack

去翻 linux 文件 可以看到 uname 回傳的格式為 :

struct utsname {
               char sysname[];    /* Operating system name (e.g., "Linux") */
               char nodename[];   /* Name within "some implementation-defined
                                     network" */
               char release[];    /* Operating system release
                                     (e.g., "2.6.28") */
               char version[];    /* Operating system version */
               char machine[];    /* Hardware identifier */
           #ifdef _GNU_SOURCE
               char domainname[]; /* NIS or YP domain name */
           #endif
};

依照此文件把相對應的位置改掉。注意如果 release 改太小或是沒給,會噴錯。

def my_syscall_uname(ql, write_buf, *args, **kw):
    buf = b'QilingOS\x00' # sysname
    ql.mem.write(write_buf, buf)
    buf = b'30000'.ljust(65, b'\x00') # important!! If not sat will `FATAL: kernel too old`
    ql.mem.write(write_buf+65*2, buf)
    buf = b'ChallengeStart'.ljust(65, b'\x00') # version
    ql.mem.write(write_buf+65*3, buf)
    regreturn = 0
    return regreturn

ql.set_syscall("uname", my_syscall_uname)

Challenge 3

/dev/random,從中讀取兩次,確保第一次的值和 getrandom 得到的值相同,且其中沒有第二次讀到值。

查了一下 getrandom 是一 system call。因此對 /dev/random 和 getrandom() 進行 hijack 即可

class Fake_urandom(QlFsMappedObject):
    def read(self, size):
        if(size > 1):
            return b"\x01" * size
        else:
            return b"\x02"
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

def my_syscall_getrandom(ql, write_buf, write_buf_size, flag , *args, **kw):
    buf = b"\x01" * write_buf_size
    ql.mem.write(write_buf, buf)
    regreturn = 0
    return regreturn
    
ql.add_fs_mapper('/dev/urandom', Fake_urandom())
ql.set_syscall("getrandom", my_syscall_getrandom)

Challenge 4

進入不能進去的迴圈

直接 hook cmp 的位置讓 reg w0 是 1 即可,位置記得要加上 pie。

    # 00100fd8 e0 1b 40 b9     ldr        w0,[sp, #local_8]
    # 00100fdc e1 1f 40 b9     ldr        w1,[sp, #local_4]
    # 00100fe0 3f 00 00 6b     cmp        w1,w0    <- hook         
def hook_cmp(ql):
    ql.reg.w0 = 1
    return

base_addr = ql.mem.get_lib_base(ql.path) # get pie_base addr
ql.hook_address(hook_cmp, base_addr + 0xfe0)

Challenge 5

rand() 出來的值和 0 比較要通過

直接 hijack rand() 讓他回傳都是 0 即可。

def hook_cmp(ql):
    ql.reg.w0 = 1
    return
    
ql.set_api("rand", hook_rand)

Challenge 6

解開無窮迴圈

和 Challenge 4 同想法,hook cmp。

def hook_cmp2(ql):
    ql.reg.w0 = 0
    return
    
ql.hook_address(hook_cmp2, base_addr + 0x001118)

Challenge 7

不要讓他 sleep。 解法很多,可以 hook sleep 這個 api,或是看 sleep linux 文件能知道內部處理是用 nanosleep,hook 他即可。

def hook_sleeptime(ql):
    ql.reg.w0 = 0
    return
ql.hook_address(hook_sleeptime, base_addr + 0x1154)

Challenge 8

裡面最難的一題,他是建立特殊一個結構長這個樣子。

struct something(0x18){ 
 string_ptr -> malloc (0x1e) ->  0x64206d6f646e6152
 long_int = 0x3DFCD6EA00000539
 check_addr -> check;
}  

由於他結構內部有 0x3DFCD6EA00000539 這個 magic byte,因此可以直接對此作搜尋並改寫內部記憶體。這邊要注意搜尋可能找到其他位置,因此前面可以加對 string_ptr 所在位置的判斷。

def find_and_patch(ql, *args, **kw):
    MAGIC = 0x3DFCD6EA00000539
    magic_addrs = ql.mem.search(ql.pack64(MAGIC)) 

    # check_all_magic
    for magic_addr in magic_addrs:
        # Dump and unpack the candidate structure
        malloc1_addr = magic_addr - 8
        malloc1_data = ql.mem.read(malloc1_addr, 24)
        # unpack three unsigned long
        string_addr, _ , check_addr = struct.unpack('QQQ', malloc1_data)

        # check string data        
        if ql.mem.string(string_addr) == "Random data":
            ql.mem.write(check_addr, b"\x01")
            break
    return
    
ql.hook_address(find_and_patch, base_addr + 0x011dc)

另一種解法則是由於該結構在 stack 上,因此直接讀 stack 即可。

Challenge 9

把一字串轉用tolower小寫,再用 strcmp 比較。

解法一樣很多種,我是 hijack tolower() 讓他啥事都不做。

def hook_tolower(ql):
    return
    
ql.set_api("tolower", hook_tolower)

Challenge 10

打開不存在的文件,讀取的值需要是 qilinglab

和 Challenge 3 作法一樣,這邊要注意的是 return 要是 byte,string 會出錯。 = =

class Fake_cmdline(QlFsMappedObject):

    def read(self, size):
        return b"qilinglab" # type should byte byte, string will error = =
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

ql.add_fs_mapper('/proc/self/cmdline', Fake_cmdline())

Challenge 11

可以看到他從 MIDR_EL1 取值,而此為特殊的暫存器。

這邊解法是去 hook code,我選擇 hook 這段

# 001013ec 00 00 38 d5     mrs        x0,midr_el1

去搜尋所有記憶體為 b"\x00\x00\x38\xD5" ,讓他執行時把 x0 暫存器改寫,並更改 pc。

def midr_el1_hook(ql, address, size):  
    if ql.mem.read(address, size) == b"\x00\x00\x38\xD5":
        # if any code is mrs        x0,midr_el1
        # Write the expected value to x0
        ql.reg.x0 = 0x1337 << 0x10
        # Go to next instruction
        ql.reg.arch_pc += 4
    # important !! Maybe hook library
    # see : https://joansivion.github.io/qilinglabs/
    return

ql.hook_code(midr_el1_hook)

Done

Thanks

Thanks MANSOUR Cyril release his writeup, help me alot.

Owner
Yuan
Yuan
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022