The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

Overview

miseval: a metric library for Medical Image Segmentation EVALuation

shield_python shield_build shield_pypi_version shield_pypi_downloads shield_license

The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure. We hope that our this will help improve evaluation quality, reproducibility, and comparability in future studies in the field of medical image segmentation.

Guideline on Evaluation Metrics for Medical Image Segmentation

  1. Use DSC as main metric for validation and performance interpretation.
  2. Use AHD for interpretation on point position sensitivity (contour) if needed.
  3. Avoid any interpretations based on high pixel accuracy scores.
  4. Provide next to DSC also IoU, Sensitivity, and Specificity for method comparability.
  5. Provide sample visualizations, comparing the annotated and predicted segmentation, for visual evaluation as well as to avoid statistical bias.
  6. Avoid cherry-picking high-scoring samples.
  7. Provide histograms or box plots showing the scoring distribution across the dataset.
  8. For multi-class problems, provide metric computations for each class individually.
  9. Avoid confirmation bias through macro-averaging classes which is pushing scores via background class inclusion.
  10. Provide access to evaluation scripts and results with journal data services or third-party services like GitHub and Zenodo for easier reproducibility.

Implemented Metrics

Metric Index in miseval Function in miseval
Dice Similarity Index "DSC", "Dice", "DiceSimilarityCoefficient" miseval.calc_DSC()
Intersection-Over-Union "IoU", "Jaccard", "IntersectionOverUnion" miseval.calc_IoU()
Sensitivity "SENS", "Sensitivity", "Recall", "TPR", "TruePositiveRate" miseval.calc_Sensitivity()
Specificity "SPEC", "Specificity", "TNR", "TrueNegativeRate" miseval.calc_Specificity()
Precision "PREC", "Precision" miseval.calc_Precision()
Accuracy "ACC", "Accuracy", "RI", "RandIndex" miseval.calc_Accuracy()
Balanced Accuracy "BACC", "BalancedAccuracy" miseval.calc_BalancedAccuracy()
Adjusted Rand Index "ARI", "AdjustedRandIndex" miseval.calc_AdjustedRandIndex()
AUC "AUC", "AUC_trapezoid" miseval.calc_AUC()
Cohen's Kappa "KAP", "Kappa", "CohensKappa" miseval.calc_Kappa()
Hausdorff Distance "HD", "HausdorffDistance" miseval.calc_SimpleHausdorffDistance()
Average Hausdorff Distance "AHD", "AverageHausdorffDistance" miseval.calc_AverageHausdorffDistance()
Volumetric Similarity "VS", "VolumetricSimilarity" miseval.calc_VolumetricSimilarity()
True Positive "TP", "TruePositive" miseval.calc_TruePositive()
False Positive "FP", "FalsePositive" miseval.calc_FalsePositive()
True Negative "TN", "TrueNegative" miseval.calc_TrueNegative()
False Negative "FN", "FalseNegative" miseval.calc_FalseNegative()

How to Use

Example

# load libraries
import numpy as np
from miseval import evaluate

# Get some ground truth / annotated segmentations
np.random.seed(1)
real_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
real_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)
# Get some predicted segmentations
np.random.seed(2)
pred_bi = np.random.randint(2, size=(64,64))  # binary (2 classes)
pred_mc = np.random.randint(5, size=(64,64))  # multi-class (5 classes)

# Run binary evaluation
dice = evaluate(real_bi, pred_bi, metric="DSC")    
  # returns single np.float64 e.g. 0.75

# Run multi-class evaluation
dice_list = evaluate(real_mc, pred_mc, metric="DSC", multi_class=True,
                     n_classes=5)   
  # returns array of np.float64 e.g. [0.9, 0.2, 0.6, 0.0, 0.4]
  # for each class, one score

Core function: Evaluate()

Every metric in miseval can be called via our core function evaluate().

The miseval eavluate function can be run with different metrics as backbone.
You can pass the following options to the metric parameter:

  • String naming one of the metric labels, for example "DSC"
  • Directly passing a metric function, for example calc_DSC_Sets (from dice.py)
  • Passing a custom metric function

List of metrics : See miseval/__init__.py under section "Access Functions to Metric Functions"

The classes in a segmentation mask must be ongoing starting from 0 (integers from 0 to n_classes-1).

A segmentation mask is allowed to have either no channel axis or just 1 (e.g. 512x512x1), which contains the annotation.

Binary mode. n_classes (Integer): Number of classes. By default 2 -> Binary Output: score (Float) or scores (List of Float) The multi_class parameter defines the output of this function. If n_classes > 2, multi_class is automatically True. If multi_class == False & n_classes == 2, only a single score (float) is returned. If multi_class == True, multiple scores as a list are returned (for each class one score). """ def evaluate(truth, pred, metric, multi_class=False, n_classes=2)">
"""
Arguments:
    truth (NumPy Matrix):            Ground Truth segmentation mask.
    pred (NumPy Matrix):             Prediction segmentation mask.
    metric (String or Function):     Metric function. Either a function directly or encoded as String from miseval or a custom function.
    multi_class (Boolean):           Boolean parameter, if segmentation is a binary or multi-class problem. By default False -> Binary mode.
    n_classes (Integer):             Number of classes. By default 2 -> Binary

Output:
    score (Float) or scores (List of Float)

    The multi_class parameter defines the output of this function.
    If n_classes > 2, multi_class is automatically True.
    If multi_class == False & n_classes == 2, only a single score (float) is returned.
    If multi_class == True, multiple scores as a list are returned (for each class one score).
"""
def evaluate(truth, pred, metric, multi_class=False, n_classes=2)

Installation

  • Install miseval from PyPI (recommended):
pip install miseval
  • Alternatively: install miseval from the GitHub source:

First, clone miseval using git:

git clone https://github.com/frankkramer-lab/miseval

Then, go into the miseval folder and run the install command:

cd miseval
python setup.py install

Author

Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany

How to cite / More information

Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer. (2022)
MISeval: a Metric Library for Medical Image Segmentation Evaluation.
arXiv e-print: https://arxiv.org/abs/2201.09395

@inproceedings{misevalMUELLER2022,
  title={MISeval: a Metric Library for Medical Image Segmentation Evaluation},
  author={Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer},
  year={2022}
  eprint={2201.09395},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Thank you for citing our work.

License

This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.

The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022