Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Overview

Framework overview

This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized in machine learning by Echo State Networks) for classification or clustering of univariate/multivariate time series.

Several options are available to customize the RC model, by selecting different configurations for each module.

  1. The reservoir module specifies the reservoir configuration (e.g., bidirectional, leaky neurons, circle topology);
  2. The dimensionality reduction module (optionally) applies a dimensionality reduction on the produced sequence of the reservoir's states;
  3. The representation module defines how to represent the input time series from the sequence of reservoir's states;
  4. The readout module specifies the model to use to perform the final classification.

The representations obtained at step 3 can also be used to perform clustering.

This library also implements the novel reservoir model space as representation for the time series. Details on the methodology can be found in the original paper (Arix version here).

Required libraries

  • sklearn (tested on version 0.22.1)
  • scipy

The code has been tested on Python 3.7, but lower versions should work as well.

Quick execution

Run the script classification_example.py or clustering_example.py to perform a quick execution on a benchmark dataset of multivariate time series.

For the clustering example, check also the notebook here.

Configure the RC-model

The main class RC_model contained in modules.py permits to specify, train and test an RC-model. The RC-model is configured by passing to the constructor of the class RC_model a set of parameters. To get an idea, you can check classification_example.py or clustering_example.py where the parameters are specified through a dictionary (config).

The available configuration hyperparameters are listed in the following and, for the sake of clarity, are grouped according to which module of the architecture they refer to.

1. Reservoir:

  • n_drop - number of transient states to drop
  • bidir - use a bidirectional reservoir (True or False)
  • reservoir - precomputed reservoir (object of class Reservoir in reservoir.py; if None, the following hyperparameters must be specified:
    • n_internal_units = number of processing units in the reservoir
    • spectral_radius = largest eigenvalue of the reservoir matrix of connection weights (to guarantee the Echo State Property, set spectral_radius <= leak <= 1)
    • leak = amount of leakage in the reservoir state update (optional, None or 1.0 --> no leakage)
    • circ = if True, generate a determinisitc reservoir with circle topology where each connection has the same weight
    • connectivity = percentage of nonzero connection weights (ignored if circ = True)
    • input_scaling = scaling of the input connection weights (note that weights are randomly drawn from {-1,1})
    • noise_level = deviation of the Gaussian noise injected in the state update

2. Dimensionality reduction:

  • dimred_method - procedure for reducing the number of features in the sequence of reservoir states; possible options are: None (no dimensionality reduction), 'pca' (standard PCA) or 'tenpca' (tensorial PCA for multivariate time series data)
  • n_dim - number of resulting dimensions after the dimensionality reduction procedure

3. Representation:

  • mts_rep - type of multivariate time series representation. It can be 'last' (last state), 'mean' (mean of all states), 'output' (output model space), or 'reservoir' (reservoir model space)
  • w_ridge_embedding - regularization parameter of the ridge regression in the output model space and reservoir model space representation; ignored if mts_rep is None

4. Readout:

  • readout_type - type of readout used for classification. It can be 'lin' (ridge regression), 'mlp' (multilayer perceptron), 'svm' (support vector machine), or None. If None, the input representations will be stored in the .input_repr attribute: this is useful for clustering and visualization. Also, if None, the other Readout hyperparameters can be left unspecified.
  • w_ridge - regularization parameter of the ridge regression readout (only when readout_type is 'lin')
  • mlp_layout - list with the sizes of MLP layers, e.g. [20,20,10] defines a MLP with 3 layers of 20, 20 and 10 units respectively (only when readout_type is 'mlp')
  • batch_size - size of the mini batches used during training (only when readout_type is 'mlp')
  • num_epochs - number of iterations during the optimization (only when readout_type is 'mlp')
  • w_l2 = weight of the L2 regularization (only when readout_type is 'mlp')
  • learning_rate = learning rate in the gradient descent optimization (only when readout_type is 'mlp')
  • nonlinearity = type of activation function; it can be {'relu', 'tanh', 'logistic', 'identity'} (only when readout_type is 'mlp')
  • svm_gamma = bandwith of the RBF kernel (only when readout_type is 'svm')
  • svm_C = regularization for the SVM hyperplane (only when readout_type is 'svm')

Train and test the RC-model for classification

The training and test function requires in input training and test data, which must be provided as multidimensional NumPy arrays of shape [N,T,V], with:

  • N = number of samples
  • T = number of time steps in each sample
  • V = number of variables in each sample

Training and test labels (Y and Yte) must be provided in one-hot encoding format, i.e. a matrix [N,C], where C is the number of classes.

Training

RC_model.train(X, Y)

Inputs:

  • X, Y: training data and respective labels

Outputs:

  • tr_time: time (in seconds) used to train the classifier

Test

RC_module.test(Xte, Yte)

Inputs:

  • Xte, Yte: test data and respective labels

Outputs:

  • accuracy, F1 score: metrics achieved on the test data

Train the RC-model for clustering

As in the case of classification, the data must be provided as multidimensional NumPy arrays of shape [N,T,V]

Training

RC_model.train(X)

Inputs:

  • X: time series data

Outputs:

  • tr_time: time (in seconds) used to generate the representations

Additionally, the representations of the input data X are stored in the attribute RC_model.input_repr

Time series datasets

A collection of univariate and multivariate time series dataset is available for download here. The dataset are provided both in MATLAB and Python (Numpy) format. Original raw data come from UCI, UEA, and UCR public repositories.

Citation

Please, consider citing the original paper if you are using this library in your reasearch

@article{bianchi2020reservoir,
  title={Reservoir computing approaches for representation and classification of multivariate time series},
  author={Bianchi, Filippo Maria and Scardapane, Simone and L{\o}kse, Sigurd and Jenssen, Robert},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2020},
  publisher={IEEE}
}

Tensorflow version

In the latest version of the repository there is no longer a dependency from Tensorflow, reducing the dependecies of this repository only to scipy and scikit-learn. The MLP readout is now based on the scikit-learn implementation that, however, does not support dropout and the two custom activation functions, Maxout and Kafnets. These functionalities are still available in the branch "Tensorflow". Checkout it to use the Tensorflow version of this repository.

License

The code is released under the MIT License. See the attached LICENSE file.

Owner
Filippo Bianchi
Filippo Bianchi
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022