Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Related tags

Deep LearningDTA
Overview

Deconfounding Temporal Autoencoder (DTA)

This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies".

Python scripts

The following scripts are used to reproduce the results:

main.py (main script containing the implementation code)

sim_exp.py (reproducing the simulation experiments)

mimic_exp.py (reproducing the results with MIMIC-III)

The first two scripts are self contained. The last one uses the pre-processed MIMIC-III data set. The pre-processing pipeline is adopted from Wang et. al. (2020). See the references below.

Requirements

python 3.6 pytorch 1.7

Reproducing simulation results

Run the script sim_exp.py. The script contains synthetic data simulation and code that produces the results reported.

Reproducing MIMIC-III results

Run the script mimic_exp.py. The script requires the pre-processed MIMIC-III data as input (see references below).

MIMIC-III is a freely accessible database. However, access must be requested at https://physionet.org/content/mimiciii/1.4/. When MIMIC-III access is granted, the pre-processed data by Wang et. al. (2020) is accessible with instructions in the respective paper. We use this data set to study the effect of vasopressors and mechanical ventilation on two outcome variables: (diastolic) blood pressure and oxygen saturation.

We extract 2313 patients with 30 time steps each. We use the following covariates: heart rate, red blood cell count, sodium, mean blood pressure, systemic vascular resistence, glucose, chloride urine, glascow coma scale total, hematrocit, positive end-pressure set, respiratory rate, prothrombin time pt, cholesterol, hemoglobin, creatinine, blood urea nitrogen, bicarbonate, calcium ionized, partial pressure of carbon dioxide, magnesium, anion gap, phosphorous, venous pvo2, platelets, calcium urine.

References

Johnson, A. E., Pollard, T. J., Shen, L., Li-Wei, H. L., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific data, 3(1), 1-9.

Wang, S., McDermott, M. B., Chauhan, G., Ghassemi, M., Hughes, M. C., & Naumann, T. (2020, April). MIMIC-extract: A data extraction, preprocessing, and representation pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 222-235).

Owner
Milan Kuzmanovic
Milan Kuzmanovic
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022