paper list in the area of reinforcenment learning for recommendation systems

Overview

RL4Recsys

paper list in the area of reinforcenment learning for recommendation systems

https://github.com/cszhangzhen/DRL4Recsys

2020

SIGIR, Self-Supervised Reinforcement Learning for Recommender Systems, https://arxiv.org/abs/2006.05779

WSDM, Model-Based Reinforcement Learning for Whole-Chain Recommendations, https://arxiv.org/abs/1902.03987

WSDM, End-to-End Deep Reinforcement Learning based Recommendation with Supervised Embedding, https://dl.acm.org/doi/abs/10.1145/3336191.3371858

WSDM, Pseudo Dyna-Q: A Reinforcement Learning Framework for Interactive Recommendation, https://dl.acm.org/doi/abs/10.1145/3336191.3371801

AAAI, Simulating User Feedback for Reinforcement Learning Based Recommendations, https://arxiv.org/pdf/1906.11462.pdf

KBS, State representation modeling for deep reinforcement learning based recommendation, https://www.sciencedirect.com/science/article/abs/pii/S095070512030407X

MOReL : Model-Based Offline Reinforcement Learning, https://arxiv.org/abs/2005.05951

KDD, MBCAL: Sample Efficient and Variance Reduced Reinforcement Learning for Recommender Systems, https://arxiv.org/pdf/1911.02248.pdf

Generator and Critic: A Deep Reinforcement Learning Approach for Slate Re-ranking in E-commerce, https://arxiv.org/pdf/2005.12206.pdf

2019

NIPS, Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation, paper and code: http://papers.nips.cc/paper/9257-a-model-based-reinforcement-learning-with-adversarial-training-for-online-recommendation

NIPS, Benchmarking Batch Deep Reinforcement Learning Algorithms, https://arxiv.org/abs/1910.01708, code: https://github.com/sfujim/BCQ

ICML, Off-Policy Deep Reinforcement Learning without Exploration, https://arxiv.org/abs/1812.02900, code: https://github.com/sfujim/BCQ

ICML, Challenges of Real-World Reinforcement Learning, https://arxiv.org/abs/1904.12901

ICML, Horizon: Facebook's Open Source Applied Reinforcement Learning Platform, https://arxiv.org/pdf/1811.00260.pdf

ICML, Generative Adversarial User Model for Reinforcement Learning Based Recommendation System, paper and code, http://proceedings.mlr.press/v97/chen19f.html

KDD, Deep Reinforcement Learning for List-wise Recommendations,https://arxiv.org/pdf/1801.00209.pdf code: https://github.com/luozachary/drl-rec

WSDM, Top-K Off-Policy Correction for a REINFORCE Recommender System, https://arxiv.org/pdf/1812.02353.pdf

SigWeb, Deep reinforcement learning for search, recommendation, and online advertising: a survey, https://dl.acm.org/doi/abs/10.1145/3320496.3320500

UIST, Learning Cooperative Personalized Policies from Gaze Data, https://dl.acm.org/doi/abs/10.1145/3332165.3347933

Toward Simulating Environments in Reinforcement Learning Based Recommendations, https://arxiv.org/abs/1906.11462

RecSys, PyRecGym: a reinforcement learning gym for recommender systems, https://dl.acm.org/doi/abs/10.1145/3298689.3346981

Recsys, Revisiting offline evaluation for implicit-feedback recommender systems, https://dl.acm.org/doi/pdf/10.1145/3298689.3347069

IJCAI, Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology, https://arxiv.org/pdf/1905.12767.pdf

AAAI, Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning, https://arxiv.org/pdf/1805.10000.pdf

WWW, Towards Neural Mixture Recommender for Long Range Dependent User Sequences, https://dl.acm.org/doi/abs/10.1145/3308558.3313650

Deep Reinforcement Learning for Online Advertising in Recommender Systems, https://arxiv.org/abs/1909.03602

Towards Characterizing Divergence in Deep Q-Learning, https://arxiv.org/abs/1903.08894

Dynamic Search -- Optimizing the Game of Information Seeking, https://arxiv.org/abs/1909.12425

RecSim: A Configurable Simulation Platform for Recommender Systems, https://arxiv.org/abs/1909.04847

2018

KDD, Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application, https://arxiv.org/pdf/1803.00710.pdf

WWW, DRN: A Deep Reinforcement Learning Framework for News Recommendation, http://www.personal.psu.edu/~gjz5038/paper/www2018_reinforceRec/www2018_reinforceRec.pdf

General RL Materials

https://github.com/higgsfield/RL-Adventure-2, PyTorch tutorial of: actor critic / proximal policy optimization / acer / ddpg / twin dueling ddpg / soft actor critic / generative adversarial imitation learning / hindsight experience replay

Key Papers from OpenAI, https://spinningup.openai.com/en/latest/spinningup/keypapers.html

Strategic Exploration in Reinforcement Learning - New Algorithms and Learning Guarantees, https://www.ml.cmu.edu/research/phd-dissertation-pdfs/cmu-ml-19-116-dann.pdf

Other Paper

Learning to Recommend via Meta Parameter Partition, https://arxiv.org/pdf/1912.04108.pdf

Adversarial Machine Learning in Recommender Systems: State of the art and Challenges, https://arxiv.org/abs/2005.10322

WWW20, Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations, https://dl.acm.org/doi/abs/10.1145/3366424.3386195

ICLR2020, On the Variance of the Adaptive Learning Rate and Beyond, https://github.com/LiyuanLucasLiu/RAdam, code: https://github.com/LiyuanLucasLiu/RAdam

WSDM2020, Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback, https://dl.acm.org/doi/abs/10.1145/3336191.3371783

Recsys2019, Recommending what video to watch next: a multitask ranking system, https://dl.acm.org/doi/abs/10.1145/3298689.3346997

Recsys2019, Addressing delayed feedback for continuous training with neural networks in CTR prediction, https://dl.acm.org/doi/abs/10.1145/3298689.3347002

IJCAI2019, Sequential Recommender Systems: Challenges, Progress and Prospects, https://arxiv.org/abs/2001.04830

KDD2019, Fairness in Recommendation Ranking through Pairwise Comparisons, https://dl.acm.org/doi/abs/10.1145/3292500.3330745

BoTorch: Programmable Bayesian Optimization in PyTorch, https://arxiv.org/abs/1910.06403

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Facebook Research 605 Jan 02, 2023
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022