A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

Overview

Pneumonia Classification

This is a simple REST api that is served to classify pneumonia given an X-ray image of a chest of a human being. The following are expected results when the model does it's classification.

  1. pneumonia bacteria
  2. pneumonia virus
  3. normal

Starting the server

To run this server and make prediction on your own images follow the following steps

  1. create a virtual environment and activate it
  2. run the following command to install packages
pip install -r requirements.txt
  1. navigate to the app.py file and run
python app.py

Model

We are using a simple Multi Layer Perceptron (MLP) achitecture to do the categorical image classification on chest-x-ray images which looks simply as follows:

class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, dropout=.5):
        super(MLP, self).__init__()
        self.input_fc = nn.Linear(input_dim, 250)
        self.hidden_fc = nn.Linear(250, 100)
        self.output_fc = nn.Linear(100, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        batch_size = x.shape[0]
        x = x.view(batch_size, -1)
        x = F.relu(self.input_fc(x))
        x = self.dropout(x)
        x = F.relu(self.hidden_fc(x))
        x = self.dropout(x)
        outputs = self.output_fc(x)
        return outputs, x

All images are transformed to grayscale.

Model Metrics

The following table shows all the metrics summary we get after training the model for few 10 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
chest-x-ray.pt pneumonia classification using Multi Layer Perceprton (MLP) 73.73% 73.73% 72.47% 0.621 0.621 0.639

Classification report

This classification report is based on the first batch of the test dataset i used which consist of 64 images in a batch.

# precision recall f1-score support
micro avg 100% 81% 90% 4096
macro avg 100% 81% 90% 4096
weighted avg 100% 81% 90% 4096

Confusion matrix

The following image represents a confusion matrix for the first batch in the validation set which contains 64 images in a batch:

Pneumonia classification

If you hit the server at http://localhost:3001/api/pneumonia you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/api/pneumonia with a file image of the right format will yield the following json response to the client.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Using curl

Make sure that you have the image named normal.jpeg in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the image.

To make a curl POST request at http://localhost:3001/api/pneumonia with the file normal.jpeg we run the following command.

curl -X POST -F [email protected] http://127.0.0.1:3001/api/pneumonia

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type image and select the image you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": {
    "class_label": "NORMAL",
    "label": 0,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.8500000238418579
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.07000000029802322
      },
      {
        "class_label": "PNEUMONIA VIRAL",
        "label": 2,
        "probability": 0.07999999821186066
      }
    ],
    "probability": 0.8500000238418579
  },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("image", input);
fetch("http://127.0.0.1:3001/api/pneumonia", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Notebooks

The ipynb notebook that i used for training the model and saving an .pt file was can be found:

  1. Model Training And Saving
Owner
crispengari
ai || software development. (creating brains using artificial neural nets to make softwares that has human mind.)
crispengari
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022