AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

Related tags

Deep LearningAdaFocus
Overview

AdaFocus (ICCV 2021)

This repo contains the official code and pre-trained models for AdaFocus.

Reference

If you find our code or paper useful for your research, please cite:

@InProceedings{Wang_2021_ICCV,
author = {Wang, Yulin and Chen, Zhaoxi and Jiang, Haojun and Song, Shiji and Han, Yizeng and Huang, Gao},
title = {Adaptive Focus for Efficient Video Recognition},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}

Introduction

In this paper, we explore the spatial redundancy in video recognition with the aim to improve the computational efficiency. It is observed that the most informative region in each frame of a video is usually a small image patch, which shifts smoothly across frames. Therefore, we model the patch localization problem as a sequential decision task, and propose a reinforcement learning based approach for efficient spatially adaptive video recognition (AdaFocus). In specific, a light-weighted ConvNet is first adopted to quickly process the full video sequence, whose features are used by a recurrent policy network to localize the most task-relevant regions. Then the selected patches are inferred by a high-capacity network for the final prediction. During offline inference, once the informative patch sequence has been generated, the bulk of computation can be done in parallel, and is efficient on modern GPU devices. In addition, we demonstrate that the proposed method can be easily extended by further considering the temporal redundancy, e.g., dynamically skipping less valuable frames. Extensive experiments on five benchmark datasets, i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, demonstrate that our method is significantly more efficient than the competitive baselines.

Result

  • ActivityNet

  • Something-Something V1&V2

  • Visualization

Requirements

  • python 3.8
  • pytorch 1.7.0
  • torchvision 0.8.0
  • hydra 1.1.0

Datasets

  1. Please get train/test splits file for each dataset from Google Drive and put them in PATH_TO_DATASET.
  2. Download videos from following links, or contact the corresponding authors for the access. Save them to PATH_TO_DATASET/videos
  1. Extract frames using ops/video_jpg.py, the frames will be saved to PATH_TO_DATASET/frames. Minor modifications on file path are needed when extracting frames from different dataset.

Pre-trained Models

Please download pretrained weights and checkpoints from Google Drive.

  • globalcnn.pth.tar: pretrained weights for global CNN (MobileNet-v2).
  • localcnn.pth.tar: pretrained weights for local CNN (ResNet-50).
  • 128checkpoint.pth.tar: checkpoint of stage 1 for patch size 128x128.
  • 160checkpoint.pth.tar: checkpoint of stage 1 for patch size 160x128.
  • 192checkpoint.pth.tar: checkpoint of stage 1 for patch size 192x128.

Training

  • Here we take training model with patch size 128x128 on ActivityNet dataset for example.

  • All logs and checkpoints will be saved in the directory: ./outputs/YYYY-MM-DD/HH-MM-SS

  • Note that we store a set of default paramenter in conf/default.yaml which can override through command line. You can also use your own config files.

  • Before training, please initialize Global CNN and Local CNN by fine-tuning the ImageNet pre-trained models in Pytorch using the following command:

for Global CNN:

CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=0 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.01 epochs=15 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrain_glancer=true

for Local CNN:

CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=0 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.01 epochs=15 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrain_glancer=false
  • Training stage 1, pretrained weights for Global CNN and Local CNN are required:
CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=1 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.05 epochs=50 dist_url=tcp://127.0.0.1:8857 random_patch=true patch_size=128 glance_size=224 eval_freq=5 consensus=gru hidden_dim=1024 pretrained_glancer=PATH_TO_CHECKPOINTS pretrained_focuser=PATH_TO_CHECKPOINTS
  • Training stage 2, a stage-1 checkpoint is required:
CUDA_VISIBLE_DEVICES=0 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=2 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.05 epochs=50 random_patch=false patch_size=128 glance_size=224 action_dim=49 eval_freq=5 consensus=gru hidden_dim=1024 resume=PATH_TO_CHECKPOINTS multiprocessing_distributed=false distributed=false
  • Training stage 3, a stage-2 checkpoint is required:
CUDA_VISIBLE_DEVICES=0,1 python main_dist.py dataset=actnet data_dir=PATH_TO_DATASET train_stage=3 batch_size=64 workers=8 dropout=0.8 lr_type=cos backbone_lr=0.0005 fc_lr=0.005 epochs=10 random_patch=false patch_size=128 glance_size=224 action_dim=49 eval_freq=5 consensus=gru hidden_dim=1024 resume=PATH_TO_CHECKPOINTS multiprocessing_distributed=false distributed=false

Contact

If you have any question, feel free to contact the authors or raise an issue. Yulin Wang: [email protected].

Acknowledgement

We use implementation of MobileNet-v2 and ResNet from Pytorch source code. We also borrow some codes for dataset preparation from AR-Net and PPO from here.

Owner
Rainforest Wang
Rainforest Wang
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022