This repository provides an efficient PyTorch-based library for training deep models.

Related tags

Deep LearningHammer
Overview

An Efficient Library for Training Deep Models

This repository provides an efficient PyTorch-based library for training deep models.

Installation

Make sure your Python >= 3.7, CUDA version >= 11.1, and CUDNN version >= 7.6.5.

  1. Install package requirements via conda:

    conda create -n <ENV_NAME> python=3.7  # create virtual environment with Python 3.7
    conda activate <ENV_NAME>
    pip install -r requirements/minimal.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html
  2. To use video visualizer (optional), please also install ffmpeg.

    • Ubuntu: sudo apt-get install ffmpeg.
    • MacOS: brew install ffmpeg.
  3. To reduce memory footprint (optional), you can switch to either jemalloc (recommended) or tcmalloc rather than your default memory allocator.

    • jemalloc (recommended):
      • Ubuntu: sudo apt-get install libjemalloc
    • tcmalloc:
      • Ubuntu: sudo apt-get install google-perftools
  4. (optional) To speed up data loading on NVIDIA GPUs, you can install DALI, together with dill to pickle python objects. It is optional to also install CuPy for some customized operations if needed:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-<CUDA_VERSION>
    pip install dill
    pip install cupy  # optional, installation can be slow

    For example, on CUDA 11.1, DALI can be installed via:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110  # CUDA 11.1 compatible
    pip install dill
    pip install cupy  # optional, installation can be slow

Quick Demo

Train StyleGAN2 on FFHQ in Resolution of 256x256

In your Terminal, run:

./scripts/training_demos/stylegan2_ffhq256.sh <NUM_GPUS> <PATH_TO_DATA> [OPTIONS]

where

  • refers to the number of GPUs. Setting as 1 helps launch a training job on single-GPU platforms.

  • refers to the path of FFHQ dataset (in resolution of 256x256) with zip format. If running on local machines, a soft link of the data will be created under the data folder of the working directory to save disk space.

  • [OPTIONS] refers to any additional option to pass. Detailed instructions on available options can be shown via ./scripts/training_demos/stylegan2_ffhq256.sh --help .

This demo script uses stylegan2_ffhq256 as the default value of job_name, which is particularly used to identify experiments. Concretely, a directory with name job_name will be created under the root working directory (with is set as work_dirs/ by default). To prevent overwriting previous experiments, an exception will be raised to interrupt the training if the job_name directory has already existed. To change the job name, please use --job_name= option.

More Demos

Please find more training demos under ./scripts/training_demos/.

Inspect Training Results

Besides using TensorBoard to track the training process, the raw results (e.g., training losses and running time) are saved in JSON format. They can be easily inspected with the following script

import json

file_name = '
   
    /log.json'
   

data_entries = []
with open(file_name, 'r') as f:
    for line in f:
        data_entry = json.loads(line)
        data_entries.append(data_entry)

# An example of data entry
# {"Loss/D Fake": 0.4833524551040682, "Loss/D Real": 0.4966000154727226, "Loss/G": 1.1439273656869773, "Learning Rate/Discriminator": 0.002352941082790494, "Learning Rate/Generator": 0.0020000000949949026, "data time": 0.0036810599267482758, "iter time": 0.24490128830075264, "run time": 66108.140625}

Convert Pre-trained Models

See Model Conversion for details.

Prepare Datasets

See Dataset Preparation for details.

Develop

See Contributing Guide for details.

License

The project is under MIT License.

Acknowledgement

This repository originates from GenForce, with all modules carefully optimized to make it more flexible and robust for distributed training. On top of GenForce where only StyleGAN training is provided, this repository also supports training StyleGAN2 and StyleGAN3, both of which are fully reproduced. Any new method is welcome to merge into this repository! Please refer to the Develop section.

Contributors

The main contributors are listed as follows.

Member Contribution
Yujun Shen Refactor and optimize the entire codebase and reproduce start-of-the-art approaches.
Zhiyi Zhang Contribute to a number of sub-modules and functions, especially dataset related.
Dingdong Yang Contribute to DALI data loading acceleration.
Yinghao Xu Originally contribute to runner and loss functions in GenForce.
Ceyuan Yang Originally contribute to data loader in GenForce.
Jiapeng Zhu Originally contribute to evaluation metrics in GenForce.

BibTex

We open source this library to the community to facilitate the research. If you do like our work and use the codebase for your projects, please cite our work as follows.

@misc{hammer2022,
  title =        {Hammer: An Efficient Toolkit for Training Deep Models.},
  author =       {Shen, Yujun and Zhang, Zhiyi and Yang, Dingdong and Xu, Yinghao and Yang, Ceyuan and Zhu, Jiapeng},
  howpublished = {\url{https://github.com/bytedance/Hammer}},
  year =         {2022}
}
Owner
Bytedance Inc.
Bytedance Inc.
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022