DTCN SMP Challenge - Sequential prediction learning framework and algorithm

Overview

DTCN

This is the implementation of our paper "Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks".

Dataset

To successfully test performance, we created TPIC Dataset, a temporal popularity image collection dataset.

Overview

Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales.

DTCN framework

Environment

The code is pure python. Keras is chosen to be the deep learning library here. Environment is configured by Anaconda. The environment file is saved as "environment.yml".

  • Ubuntu 16.04
  • Python 2.7
  • Cuda 10.0
  • cudnn 7.6.5

Setup

conda env create -f environment.yml

Prequisition

  • Clone the repository to your local machine
  • Acquire relevant dataset
  • Extract the image feature with ResNet (2048 dims)
  • Run script by seeing example.

Usage

DATA_HOME=test_data/TRIM_DATA
KERAS_BACKEND=theano \
THEANO_FLAGS='mode=FAST_RUN,device=cuda0,nvcc.fastmath=True,optimizer=fast_run' \
python main.py \
-feature_path $DATA_HOME/USER_20W_SORTED_BY_TIME.txt \
-meta_path $DATA_HOME/ResNet_20W_2048_SORTED_BY_TIME.txt \
-label_path $DATA_HOME/LABEL_20W_SORTED_BY_TIME.txt \
-algorithm SHARED_DTCN \
-nb_epoch 1000 \
-start_cross_validation 2 \
-total_cross_validation 3 \
-identifier_path $DATA_HOME/USERID_20W_SORTED_BY_TIME.txt \
-timestamps_path $DATA_HOME/TIMESTAMP_20W_SORTED_BY_TIME.txt \
-visual_mlp_enabled y \
-timestep 10 \
-time_align y \
-time_dis_con continue \
-time_context_length 18 \
-time_unit_metric hour \
-discrete_time_start_offset 2 \
-discrete_time_unit 4 \
-train_set_partial 9 \
-merge_mode concat \
-dual_time_align n \
-time_weight_mode time_flag \
-dual_lstm n

Citation

@inproceedings{Wu2017DTCN,
  title={Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks},
  author={Wu, Bo and Cheng, Wen-Huang and Zhang, Yongdong and Qiushi, Huang and Jintao, Li and Mei, Tao},
  booktitle={IJCAI},
  year={2017},
  location = {Melbourne, Australia}}

Please concat us ([email protected]) if you have further questions or cooporations

Owner
Bobby
Bobby
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022