Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Overview

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Paddle-PANet

目录

结果对比

CTW1500

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model Log
mmocr_PANet Resnet18 N ctw_config 77.6 83.8 80.6 -- --
PAN (paper) ResNet18 N config 84.6 77.7 81.0 - -
PaddlePaddle_PANet ResNet18 N panet_r18_ctw.py 84.51 78.62 81.46 Model Log

论文介绍

背景简介

这是发在2019ICCV上的一篇一阶段场景文本检测论文。主要是PSENet的升级版。PSENet虽然处理速度很快,准确度很高,但后处理过程繁琐,而且没办法和网络模型融合在一起,实现训练。PANet很好的解决了这一问题,把后处理过程也放入网络中,预测出三个loss,最后进行融合。

网络结构

上图为PAN的整个网络结构,网络主要由Backbone + Segmentation Head(FPEM + FFM) + Output(Text Region、Kernel、Similarity Vector)组成。

本文使用ResNet-18作为PAN的默认Backbone,并提出了低计算量的Segmentation Head(FPFE + FFM)以解决因为使用ResNet-18而导致的特征提取能力较弱,特征感受野较小且表征能力不足的缺点。

此外,为了精准地重建完整的文字实例(text instance),提出了一个可学习的后处理方法——像素聚合法(PA),它能够通过预测出的相似向量来引导文字像素聚合到正确的kernel上去。

下面将详细介绍一下上面的各个部分。

Backbone

Backbone选择的是resnet18, 提取stride为4,8,16,32的conv2,conv3,conv4,conv5的输出作为高低层特征。每层的特征图的通道数都使用1*1卷积降维至128得到轻量级的特征图Fr。

Segmentation Head

PAN使用resNet-18作为网络的默认backbone,虽减少了计算量,但是backbone层数的减少势必会带来模型学习能力的下降。为了提高效率,作者在 resNet-18基础上提出了一个低计算量但可高效增强特征的分割头Segmentation Head。它由两个关键模块组成:特征金字塔增强模块(Feature Pyramid Enhancement Module,FPEM)、特征融合模块(Feature Fusion Module,FFM)。

FPEM

Feature Pyramid Enhancement Module(FPEM),即特征金字塔增强模块。FPEM呈级联结构且计算量小,可以连接在backbone后面让不同尺寸的特征更深、更具表征能力,结构如下:

FPEM是一个U形模组,由两个阶段组成,up-scale增强、down-scale增强。up-scale增强作用于输入的特征金字塔,它以步长32,16,8,4像素在特征图上迭代增强。在down-scale阶段,输入的是由up-scale增强生成的特征金字塔,增强的步长从4到32,同时,down-scale增强输出的的特征金字塔就是最终FPEM的输出。 FPEM模块可以看成是一个轻量级的FPN,只不过这个FPEM计算量不大,可以不停级联以达到不停增强特征的作用。

FFM

Feature Fusion Module(FFM)模块用于融合不同尺度的特征,其结构如下:

最后通过上采样将它们Concatenate到一起。

模型最后预测三种信息: 1、文字区域 2、文字kernel 3、文字kernel的相似向量

Loss

其中文字区域和kernel预测loss为:

快速安装

Recommended environment

Python 3.6+
paddlepaddle-gpu 2.0.2
nccl 2.0+
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython

Install env

Install paddle following the official tutorial.

pip install -r requirement.txt
./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Pretrain Backbone

download resent18 pre-train model in pretrain/resnet18.pdparams

pretrain_resnet18 password: j5g3

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py config/pan/pan_r18_ctw.py
#checkpoint continue
python3.7 dist_train.py config/pan/pan_r18_ctw_train.py --nprocs 1 --resume checkpoints/pan_r18_ctw_train

Evaluation

The evaluation scripts of CTW 1500 dataset. CTW

Text detection

./start_test.sh

License

This project is developed and maintained by IMAGINE [email protected] Key Laboratory for Novel Software Technology, Nanjing University.

This project is released under the Apache 2.0 license.

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}
Owner
Dreams Are Messages From The Deep🪐
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021